Muutke küpsiste eelistusi

E-raamat: Coordinate Metrology: Accuracy of Systems and Measurements

  • Formaat - PDF+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek"s team at Cracow University of Technology"s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing

in recent years. The book is intended for master and PhD students, as well as for metrology engineers working at industrial and research laboratories. It not only provides them with a solid background for using existing coordinate metrology methods; it is also meant to inspire them to develop the state-of-the-art technologies that will play an important role in supporting quality growth and innovation in advanced manufacturing.

Introduction.- Measurement Uncertainty and Requirements of Production System.- Selected Issues of Measurement Uncertainty Theory.- Classic (Non-simulative) Methods Of Measurement Accuracy Assessment.- Analysis of the Accuracy of Coordinate Measuring Systems.- Simulation Methods for Assessing Accuracy of Measurements.- Accuracy of Modern Coordinate Measuring Systems.- Summary and Directions for Future Works on Coordinate Measurements Accuracy.
1 Introduction
1(14)
References
9(6)
2 Measurement Uncertainty and Requirements of Production System. Selected Issues of Measurement Uncertainty Theory
15(40)
2.1 Coordinate Measurement During Production Process
15(4)
2.2 Measurement Uncertainty
19(9)
2.3 Vector Concept of Describing Coordinate Measurement Accuracy: Measuring Point Reproducibility Error
28(12)
2.4 Coordinate Measurement Uncertainty and Regulatory Requirements
40(15)
References
46(9)
3 Classic (Nonsimulative) Methods of Measurement Accuracy Assessment
55(76)
3.1 Method Using the Calibrated Object or the Standard
57(12)
3.2 Noncalibrated Object Method (Multiposition Method)
69(11)
3.2.1 Measurement of an Object Characteristic
72(1)
3.2.2 Measurements of Length Standards
72(1)
3.2.3 Measurement of Diameter Standards
73(1)
3.2.4 Calculation of the Value of Measured Object Characteristic
74(1)
3.2.5 Calculation of Measurement Uncertainty
75(1)
3.2.6 Calculation of the Uncertainty Component urep
76(1)
3.2.7 Calculation of Uncertainty Component ugeo
77(1)
3.2.8 Calculation of Uncertainty Component ucorrL
77(1)
3.2.9 Calculation of Uncertainty Component of Length Change Derived from Thermal Influences
78(2)
3.3 Monte Carlo Method for Uncertainty Determination in Multiposition and Substitution Method
80(5)
3.4 Determination of Uncertainty of Freeform Profile Measurement
85(7)
3.5 Measurement Uncertainty Estimation for Calibrations Based on Error Source Identification: Error Budget
92(17)
3.5.1 Uncertainty Budget for the Calibration Procedure of the Plate Standard (Hole Plate) Calibrated on PMM12106 Leitz Machine
94(4)
3.5.2 Thermodynamic Model
98(4)
3.5.3 Description of the Hole Plate Calibration Procedure
102(7)
3.6 Methods Based on Relations Resulting from the Model of Maximum Permissible Errors of Coordinate Measuring System
109(5)
3.7 Analytical Method of Measurement Uncertainty Determination
114(17)
3.7.1 Geometric Error Model
115(1)
3.7.2 Measurement Models
115(5)
3.7.3 Measurement Uncertainty as a Complex Uncertainty
120(1)
3.7.4 Estimation of Maximum Value for the Geometric Error Difference
121(1)
3.7.5 Software
122(1)
3.7.6 Particular Stages in the Operating Software
122(3)
References
125(6)
4 Analysis of the Accuracy of Coordinate Measuring Systems
131(96)
4.1 Sources and Causes of Coordinate Measuring Machine Errors
131(5)
4.2 Identification and Software Correction of Measuring Machine Errors
136(20)
4.2.1 Determination of Geometric Errors of the Measuring Machine Using the Laser Interferometer
139(4)
4.2.2 PTB Method Using Plate Standard for Geometric Errors of Coordinate Measuring Machine Identification
143(8)
4.2.3 Identification of Geometric Errors Using Laser Tracker Systems and Multilateration Method
151(5)
4.3 Error Sources of Point Coordinates Contact Acquisition System---Probe Head Error Function
156(15)
4.3.1 Analysis of Error Sources and Causes: Probe Head Error Function (PEF)
156(8)
4.3.2 Contact Probe Head Error Tests
164(7)
4.4 Matrix Method (MM) of CMM Accuracy Identification
171(23)
4.4.1 Idea of the MM Method
171(2)
4.4.2 Connection of MM Method with Reproducibility Error of Measuring Point (REMP)
173(5)
4.4.3 Matrix Method Evaluation Based on Comparative Tests Carried Out on Accurate Measuring Machine
178(4)
4.4.4 Use of Matrix Method for Error Identification of Large Measuring Machines (LCMM)
182(12)
4.5 Modeling and Identification of Errors of Articulated Arm Coordinate Measuring Machines (AACMM)
194(33)
4.5.1 Idea of AACMM Errors Model
195(3)
4.5.2 AACMM Kinematic Description: Denavit--Hartenberg Notation
198(7)
4.5.3 Kinematic Model (KmAACMM) Parameter Identification
205(4)
4.5.4 Visualization and Correctness Assessment of Kinematic Model (KmAACMM)
209(4)
References
213(14)
5 Simulation Methods for Assessing Accuracy of Measurements
227(110)
5.1 Introduction to Modeling of Measurement Devices and Systems
227(9)
5.1.1 Construction of the Model
229(1)
5.1.2 Simulation
229(4)
5.1.3 Comparison of Uncertainty Budget with Simulation
233(2)
5.1.4 Model of Measurement Process
235(1)
5.2 Simulation Models of Coordinate Measuring Systems
236(101)
5.2.1 Virtual Measuring Machine PTB
237(7)
5.2.2 Universal Model of Coordinate Measuring Machine: Virtual CMM CUT
244(4)
5.2.3 Virtual CMM Based on Artificial Neutral Networks
248(39)
5.2.4 Virtual CMM Based on the Monte Carlo Method
287(21)
5.2.5 CMM Simulator and Virtual Machine
308(9)
5.2.6 Virtual Articulated Arm Coordinate Measuring Machine (VAACMM)
317(11)
References
328(9)
6 Accuracy of Modern Coordinate Measuring Systems
337
6.1 Coordinate Systems Accuracy Test in Accordance with ISO Standards
338(19)
6.1.1 Accuracy Testing and Calibration of Contact Systems
339(9)
6.1.2 Accuracy Testing and Calibration of Optical Systems and Computed Tomography
348(9)
6.2 Standards Used for Reverification and Interim Tests for CMM
357