Muutke küpsiste eelistusi

E-raamat: Copper Interconnect Technology

  • Formaat: PDF+DRM
  • Ilmumisaeg: 22-Jan-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781441900760
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 22-Jan-2010
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781441900760
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this book, a leader in the field describes advanced laser systems with lower radiation wavelengths, photolithography materials, and mathematical modeling approaches to address the challenges of Cu-interconnect technology.



Since overall circuit performance has depended primarily on transistor properties, previous efforts to enhance circuit and system speed were focused on transistors as well. During the last decade, however, the parasitic resistance, capacitance, and inductance associated with interconnections began to influence circuit performance and will be the primary factors in the evolution of nanoscale ULSI technology. Because metallic conductivity and resistance to electromigration of bulk copper (Cu) are better than aluminum, use of copper and low-k materials is now prevalent in the international microelectronics industry. As the feature size of the Cu-lines forming interconnects is scaled, resistivity of the lines increases. At the same time electromigration and stress-induced voids due to increased current density become significant reliability issues. Although copper/low-k technology has become fairly mature, there is no single book available on the promise and challenges of these next-generation technologies. In this book, a leader in the field describes advanced laser systems with lower radiation wavelengths, photolithography materials, and mathematical modeling approaches to address the challenges of Cu-interconnect technology.

Arvustused

From the reviews:

This book addresses the major issues encountered with the use of copper for interconnection lines in microelectronics. It combines materials, technology, and applications to address the needs of the microelectronics researcher. This book is filled with graphs, data, properties, applications, and methods that will provide both the graduate student in microelectronics and the working microelectronics professional with current information on copper interconnection technology. It is an outstanding reference text that provides an excellent source of information on current copper interconnect technology and future possibilities. (Electrical Insulation Magazine, Vol. 27 (2), March/April, 2011)

Introduction 1(1)
Trends and Challenges
2(3)
Physical Limits and Search for New Materials
5(1)
Challenges
6(1)
Choice of Materials
7(8)
Why Copper (Cu) Interconnects?
7(8)
New Technologies
15(4)
Multilayer Metal Architecture
15(1)
Substrate Engineering
16(3)
An Alternate Technology for Interconnects
19(2)
Materials Used in Modern Integrated Circuits
21(6)
Properties of Copper
23(1)
Grain Size
24(1)
Melting Temperature
25(2)
Barrier Layer
27(1)
Low-K Dielectric Materials
28(2)
Polymers
30(3)
Semiconductors
33(2)
Silicon (Si)
33(2)
Challenges and Accomplishments
35(3)
Challenges
35(1)
Accomplishments
35(3)
Technologies of the 21st Century, and the Plan to Meet the Challenges
38(2)
Ultra-Shallow Junction (USJ)
40(1)
Circuit Design and Architecture Improvements
41(1)
Performance and Leakage in Low Standby Power (LSTP) Systems
42(1)
Introduction of New Materials and Integration Processes
43(10)
Nano-Materials
44(1)
Superconductors
45(2)
Integration Processes
47(6)
Summary
53(14)
References
55(12)
Dielectric Materials
67(44)
Introduction
67(4)
Interlayer Dielectric (ILD)
71(26)
Introduction
71(3)
Mathematical Model
74(2)
Selection Criteria for an Ideal Low-K Material
76(2)
Search for an Ideal Low-K Material
78(5)
Achievement
83(9)
Impact of Low-K ILD Materials on the Cu-Damascene Process
92(3)
Deposition Techniques
95(2)
High-K Dielectric Materials
97(14)
Introduction
97(1)
Impact on Scaling and Requirements
98(1)
Search for a Suitable High-K Dielectric Material
99(3)
Deposition Technology for High-K Materials
102(1)
Summary
102(1)
References
103(8)
Diffusion and Barrier Layers
111(50)
Diffusion
111(14)
Introduction
111(2)
Transitional Effects
113(1)
Mathematical Modeling of Diffusion in Cu-Interconnects
114(4)
Grain Boundary (GB) Diffusion
118(2)
Vacancy Diffusion
120(1)
Drift Diffusion
121(1)
Interdiffusion
122(1)
Diffusion of Copper and Its Consequences
122(2)
Precipitation
124(1)
Barrier Layer for Cu-Interconnects
125(25)
Theory
125(1)
Ideal Barrier Layer
126(1)
Barrier Layer Architecture
126(2)
Interlayer Reactions
128(4)
Influence of the Barrier Layer Properties on the Reliability of Cu-Interconnects
132(3)
Low-K Dielectric-Barrier Layer
135(1)
Reaction Rates
135(4)
Influence of the Barrier Layer on the Electrical Conductivity of Cu-Lines
139(2)
Influence of Barrier Layer Thermal Conductivity on Cu-Line
141(3)
Classification of Barrier Layer
144(1)
Properties of Different Barrier Layer Materials
145(3)
Cap-Layer, Its Properties and Functions
148(2)
Summary
150(11)
References
151(10)
Pattern Generation
161(62)
Photolithography
161(36)
Introduction
161(3)
Resolution Limits of Optical Lithography
164(4)
Deep Ultraviolet (DUV) Lithography
168(5)
Reticles
173(2)
Enhancement Techniques for Resolution
175(4)
157 nm Lithography
179(4)
Chemically Amplified Resist (CA)
183(2)
Extreme Ultraviolet (EUV) Lithography
185(4)
e-Beam Lithography (EBL)
189(3)
Electron-Beam Resist
192(3)
e-Beam Reticle
195(1)
Step and Flash Imprint Lithography (SFIL)
195(2)
Etching and Cleaning of Damascene Structures
197(17)
Etching
197(13)
Cleaning
210(4)
Summary
214(9)
References
216(7)
Deposition Technologies of Materials for Cu-Interconnects
223(44)
Introduction
223(1)
Emerging Technologies
224(1)
Cu-Damascene Process
224(1)
Barrier Layer Requirements
225(1)
Deposition Requirements
225(1)
Thin Film Growth and Theory of Nucleation
226(4)
Nucleation Theory
227(3)
Instrumentation
230(6)
Physical Vapor Deposition
230(1)
Sputtering
231(3)
Ionized Physical Vapor Deposition (IPVD)
234(2)
Chemical Vapor Deposition (CVD)
236(4)
Plasma Enhanced CVD (PECVD) System
236(2)
Metal-Organic Vapor Deposition (MOCVD)
238(2)
Low Temperature Thermal CVD (LTTCVD) System
240(1)
Atomic Layer Deposition (ALD)
241(2)
Plating
243(4)
History of Electroplating and Printed Circuit Boards (PCBs)
243(1)
DC Bath Chemistry
244(1)
Electroplating of Copper Inside Damascene Architecture
245(2)
Process Chemistry for Superconformal Electrodeposition of Copper
247(1)
Electrochemical Mechanical Deposition (ECMD)
248(1)
Influence of the Seed Layer on Electroplating
249(1)
Electroless Deposition of Copper
250(1)
Stress in Cu-Interconnects
251(2)
Summary
253(14)
References
254(13)
The Copper Damascene Process and Chemical Mechanical Polishing
267(34)
The Copper Damascene Process
267(11)
Introduction
267(3)
Conventional Metallization Technology
270(1)
Cu-Damascene Metallization Technology
271(5)
General Objectives and Challenges
276(2)
Chemical Mechanical Polishing (CMP) and Planarization
278(18)
Introduction
278(1)
Chemical Mechanical Polishing (CMP)Technology
279(6)
Copper Dishing Model
285(1)
Slurry Chemistry
286(1)
Particle Size Inside the Slurry
287(2)
Relative Velocity of the Pad and Wafer
289(1)
Pad Pressure
289(1)
Pad-Elasticity
289(1)
Pad Conditioning
289(1)
Shallow Trench Isolation (STI)
290(1)
Abrasive Free Polishing
291(1)
End-Point Detection
291(1)
Dry In Dry Out
292(1)
Multi-Step Processing
293(1)
Post-CMP Cleaning
293(2)
CMP Pattern Density Issues
295(1)
Summary
296(5)
References
296(5)
Conduction and Electromigration
301(46)
Conduction
301(23)
Introduction
301(2)
Conduction Mechanism and Restrictions
303(8)
Effect of Grain Boundary (GB) Resistance on the Conductivity of Cu-Interconnects
311(1)
Effect of Grain Size and Morphology of the Substrate
311(1)
Morphology of the Cu-Film and Its Influence on the Conduction (Electrical) Mechanism of Cu-Interconnects
312(5)
Effect of Film Thickness on the Conductivity of Cu-Interconnects
317(1)
Diffusion Related Impacts on the Conductivity of a Cu-Line
318(1)
Cu-Line Stress and Its Consequences
319(2)
Conduction of Heat Through Cu-Interconnects
321(1)
Thermal Cycling (Annealing) Related Phenomena
322(2)
Electromigration (EM)
324(12)
Electromigration (EM)
324(1)
Mechanism of Electromigration (EM) and Its Effects
325(4)
Void Formation
329(1)
Analytical Model on Stress Related EM
330(3)
Effect of Microstructure of the Film on Mass Migration
333(2)
Effect of Solute on Electromigration
335(1)
Melting Temperature of a Metal and Its Effect on Grain Growth
335(1)
Effect of Temperature on EM
336(1)
Current Density and Its Effect on EM
336(1)
Summary
336(11)
References
337(10)
Routing and Reliability
347(58)
Routing
347(15)
Introduction
347(2)
Methods of Improving Interconnect Routings
349(2)
Interconnect Routing Design
351(8)
Challenges with High Density Routing
359(2)
Cascaded Driver
361(1)
Transmission Line Coupling
361(1)
Clocking of High-Speed System
361(1)
Reliability
362(31)
Introduction
362(3)
Reliability Issues Related to Cu-Interconnects
365(23)
Measurements
388(5)
Summary
393(12)
References
394(11)
Glossary (Copper Interconnects) 405(10)
Index 415