Muutke küpsiste eelistusi

E-raamat: Core Analysis: A Best Practice Guide

(LR Senergy Ltd., UK), (LR Senergy Ltd., UK), (LR Senergy Ltd., UK)
  • Formaat - PDF+DRM
  • Hind: 150,15 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Core Analysis: A Best Practice Guide is a practical guide to the design of core analysis programs. Written to address the need for an updated set of recommended practices covering special core analysis and geomechanics tests, the book also provides unique insights into data quality control diagnosis and data utilization in reservoir models.The books best practices and procedures benefit petrophysicists, geoscientists, reservoir engineers, and production engineers, who will find useful information on core data in reservoir static and dynamic models. It provides a solid understanding of the core analysis procedures and methods used by commercial laboratories, the details of lab data reporting required to create quality control tests, and the diagnostic plots and protocols that can be used to identify suspect or erroneous data.Provides a practical overview of core analysis, from coring at the well site to laboratory data acquisition and interpretationDefines current best practice in core analysis preparation and test procedures, and the diagnostic tools used to quality control core dataProvides essential information on design of core analysis programs and to judge the quality and reliability of core analysis data ultimately used in reservoir evaluationOf specific interest to those working in core analysis, porosity, relative permeability, and geomechanics

Muu info

Provides essential information on planning, designing, managing, and interpreting core analysis programs
Series Editors Preface xvii
Preface xix
1 Best Practice in Coring and Core Analysis 1(16)
1.1 Core Analysis Data: The Foundation of Formation Evaluation
1(3)
1.2 Core Analysis Data Uncertainty
4(4)
1.2.1 Reasons and Consequences
4(4)
1.2.2 Reducing Uncertainty
8(1)
1.3 Core Analysis Management Framework
8(3)
1.3.1 Core Analysis Planning and Design
8(1)
1.3.2 Programme Design Considerations
9(1)
1.3.3 Core Analysis Focal Points
9(2)
1.3.4 Real-Time Quality Control
11(1)
1.4 Best Practice in Core Analysis: An Overview
11(4)
1.4.1 Coring, Core Handling and Core Processing
12(1)
1.4.2 Sample Preparation
12(1)
1.4.3 Routine Core Analysis
12(1)
1.4.4 Special Core Analysis
12(1)
1.4.5 Geomechanics Tests
13(1)
1.4.6 Quality Control Procedures and Diagnostics
13(1)
1.4.7 Example Core Analysis Programmes
14(1)
1.4.8 Benefits
14(1)
References
15(2)
2 Wel!site Core Acquisition, Handling and Transportation 17(72)
2.1 Coring Systems
17(23)
2.1.1 Conventional Full-Diameter Coring Systems
18(9)
2.1.2 Wireline-Retrievable Cores
27(1)
2.1.3 Gel Coring Systems
28(1)
2.1.4 Liquid and Gas Retention Coring Systems
28(7)
2.1.5 Oriented Coring
35(2)
2.1.6 Sidewall Cores
37(3)
2.2 Conventional Coring Operations
40(5)
2.2.1 Health, Safety and Environmental Considerations
41(1)
2.2.2 Coring Team
42(1)
2.2.3 Managing Coring Risks
42(3)
2.3 Coring Fluids
45(3)
2.3.1 Mud Types
45(1)
2.3.2 Mud Tracers
45(3)
2.4 Core Damage and Core Fluid/Petrophysical Property Alteration
48(18)
2.4.1 Fluid Saturation Alteration
48(4)
2.4.2 Stress Release
52(5)
2.4.3 Wettability Alteration
57(9)
2.5 Best Practice in Wellsite Handling
66(15)
2.5.1 Core Recovery on Rig Floor
66(2)
2.5.2 Linear Layout and Marking
68(2)
2.5.3 Wellsite Gamma-Ray Scanning
70(1)
2.5.4 Wellsite Liner Cutting
70(2)
2.5.5 Wellsite Core Stabilisation and Preservation
72(5)
2.5.6 Wellsite Sampling
77(2)
2.5.7 Core Transportation
79(2)
2.5.8 Coring Report
81(1)
2.6 Special Handling Considerations for Difficult Rock Types
81(3)
2.6.1 Unconsolidated Core
81(1)
2.6.2 Carbonates
82(1)
2.6.3 Shaly Sands
83(1)
2.6.4 Shales
83(1)
2.6.5 Coal
84(1)
References
84(3)
Recommended Reading
87(2)
3 Core Laboratory Processing and Screening 89(46)
3.1 Introduction
89(2)
3.2 Core Receipt and Cutting
91(1)
3.3 CT Scanning
91(4)
3.4 Gamma Ray Logging
95(5)
3.5 Removal from Liners
100(2)
3.6 Core Viewing and Sample Selection
102(2)
3.7 Sample Preservation
104(2)
3.7.1 Dry Preservation
104(2)
3.7.2 Wet Preservation
106(1)
3.8 Core Plugging
106(11)
3.8.1 Plug Samples
106(2)
3.8.2 Drill Press and Plugging Fluids
108(2)
3.8.3 Plug Orientation
110(2)
3.8.4 Plug Allocation
112(4)
3.8.5 Plug Trimming
116(1)
3.9 Core Slabbing
117(1)
3.10 Core Resination
118(2)
3.11 Core Photography and Imaging
120(5)
3.11.1 Conventional Imaging
121(3)
3.11.2 360° Core Imaging
124(1)
3.12 Weak or Unconsolidated Core Processing
125(9)
3.12.1 Core Receipt and Cutting
125(1)
3.12.2 CT Scanning
125(4)
3.12.3 Core Gamma Ray Scanning
129(1)
3.12.4 Core Slabbing
129(1)
3.12.5 Core Viewing and Sample Selection
129(1)
3.12.6 Core Plugging and Plug Protection
130(3)
3.12.7 Core Photography
133(1)
3.12.8 Core Preservation
133(1)
References
134(1)
Recommended Reading
134(1)
4 Core Sample Preparation 135(46)
4.1 Introduction
135(1)
4.2 Cleaning
136(10)
4.2.1 Solvents
136(2)
4.2.2 Common Cleaning Methods
138(8)
4.2.3 Core Cleaning Methods: Advantages and Drawbacks
146(1)
4.3 Core Drying
146(7)
4.3.1 Conventional (and Vacuum) Oven Drying
146(1)
4.3.2 Humidity Oven Drying
146(4)
4.3.3 Critical Point Drying
150(2)
4.3.4 Flow-Through Drying
152(1)
4.3.5 Core Drying Methods: Advantages and Drawbacks
153(1)
4.4 Quality Control Issues, Checks and Diagnostics
153(3)
4.5 Clays and Clay Damage Mechanisms
156(14)
4.5.1 Clay Mineral Structures
158(2)
4.5.2 Clay Types
160(1)
4.5.3 Cation Exchange Capacity
161(2)
4.5.4 Clay Morphology and Rock Property Controls
163(2)
4.5.5 Clay Damage Mechanisms
165(3)
4.5.6 Testing Without Drying
168(2)
4.6 Core Conditioning for Porosity Measurements
170(5)
4.6.1 Porosity Evaluation
170(1)
4.6.2 Total and Effective Porosity Concepts
170(2)
4.6.3 Log and Core Porosity
172(3)
4.7 Special Considerations in Core Preparation
175(3)
4.7.1 Wettability
175(1)
4.7.2 Carbonates and Chalks
176(1)
4.7.3 Halite
176(2)
References
178(1)
Recommended Reading/Viewing
179(2)
5 Routine Core Analysis 181(88)
5.1 Introduction
181(1)
5.2 Fluid Saturation Measurements
182(13)
5.2.1 Retort Method
183(4)
5.2.2 Dean-Stark Analysis
187(8)
5.3 Porosity Measurements
195(26)
5.3.1 Helium Grain Volume and Grain Density
199(5)
5.3.2 Helium Pore Volume
204(6)
5.3.3 Bulk Volume
210(6)
5.3.4 Liquid Saturation Porosity
216(3)
5.3.5 Accuracy and Repeatability of Porosity Measurements
219(2)
5.4 Permeability Measurements
221(41)
5.4.1 Definitions
221(1)
5.4.2 Darcy's Law
221(3)
5.4.3 Non-Darcy Flow: Klinkenberg Effects
224(4)
5.4.4 Non-Darcy Flow: Forchheimer Effect
228(1)
5.4.5 Steady-State Permeability Measurements
229(10)
5.4.6 Unsteady-State Permeability Measurements
239(8)
5.4.7 Steady-State Liquid (Absolute) Permeability Measurements
247(5)
5.4.8 Probe or Profile Permeability Measurements
252(10)
5.5 Whole Core Analysis Measurements
262(4)
5.5.1 Sample Preparation
262(1)
5.5.2 Fluid Saturations
263(1)
5.5.3 Porosity
263(1)
5.5.4 Gas Permeability
263(3)
References
266(1)
Recommended Reading/Viewing
267(2)
6 Preparation for Special Core Analysis 269(44)
6.1 Fluid Preparation and Characterisation
269(12)
6.1.1 Formation Water Samples and Brine Preparation
269(7)
6.1.2 Oil
276(3)
6.1.3 Gas
279(1)
6.1.4 Data Requirements
280(1)
6.2 Interfacial Tension
281(5)
6.2.1 Methods to Determine IFT
282(4)
6.3 Sample Selection for SCAL
286(14)
6.3.1 Sample Provenance
286(1)
6.3.2 CT Scanning and Photography
286(6)
6.3.3 Petrophysical Properties
292(8)
6.4 Reservoir Stress Estimation
300(11)
6.4.1 Test Cell Design
300(1)
6.4.2 Effective Stress Concepts
300(1)
6.4.3 Net Confining Stress Loading Conditions
301(3)
6.4.4 Reservoir Stress Data Sources
304(7)
References
311(1)
Recommended Reading
311(2)
7 Wettability and Wettability Tests 313(34)
7.1 Introduction
313(2)
7.2 Contact Angle Method
315(7)
7.2.1 Sample Preparation
316(1)
7.2.2 Test Equipment
317(2)
7.2.3 Test Procedures
319(1)
7.2.4 Results
320(1)
7.2.5 Data Reporting Requirements
320(1)
7.2.6 Contact Angle Summary
320(2)
7.3 Amott (Amott-Harvey) Method
322(10)
7.3.1 Sample Preparation
323(2)
7.3.2 Test Conditions
325(2)
7.3.3 Test Equipment
327(1)
7.3.4 Test Procedures
327(2)
7.3.5 Amott-Harvey Wettability Index Calculation
329(1)
7.3.6 Data Reporting Requirements
330(1)
7.3.7 Amott (Amott-Harvey) Summary
331(1)
7.4 USBM Method
332(7)
7.4.1 Sample Preparation
334(1)
7.4.2 Test Equipment
334(1)
7.4.3 Key Processes
334(1)
7.4.4 Test Procedures
334(2)
7.4.5 USBM Index Calculation
336(1)
7.4.6 Data Reporting Requirements
337(1)
7.4.7 USBM Summary
338(1)
7.5 Combined Amott-USBM (Combination) Method
339(5)
7.5.1 Sample Preparation
340(1)
7.5.2 Test Equipment
340(1)
7.5.3 Test Procedures
340(1)
7.5.4 Data Reporting Requirements
341(1)
7.5.5 USBM and Amott-Harvey Index Calculation
341(1)
7.5.6 Combined Amott-USBM Summary
342(2)
References
344(1)
Recommended Reading
345(2)
8 Electrical Property Tests 347(102)
8.1 Introduction
348(6)
8.1.1 Resistivity Logs
348(1)
8.1.2 Water Saturation Interpretation-Archie's Law
349(3)
8.1.3 Water Saturation Interpretation-Shaly Sands
352(1)
8.1.4 Water Saturation Interpretation Parameters from Core
353(1)
8.2 FRF Tests
354(24)
8.2.1 Sample Selection and Preparation
354(2)
8.2.2 Test Equipment
356(3)
8.2.3 Test Procedures-Ambient (Base) Conditions
359(1)
8.2.4 Test Procedures-Stress (Overburden) Conditions
360(6)
8.2.5 Data Utilisation
366(3)
8.2.6 Data Reporting Requirements
369(1)
8.2.7 Advantages and Drawbacks/Issues
369(2)
8.2.8 FRF Test Quality Control Issues, Checks and Diagnostics
371(7)
8.3 Resistivity Index Tests
378(38)
8.3.1 Test Equipment
379(3)
8.3.2 Test Procedures
382(5)
8.3.3 Data Assignment and Utilisation
387(3)
8.3.4 Saturation Exponent: Laboratory Artefacts
390(8)
8.3.5 Saturation Exponent: Rock Type and Pore/Fluid System Controls
398(8)
8.3.6 Data Reporting Requirements
406(3)
8.3.7 Advantages and Drawbacks/Issues
409(1)
8.3.8 RI Test Quality Control Issues, Checks and Diagnostics
409(7)
8.4 Waxman-Smits Parameters
416(23)
8.4.1 Shaly Sand Models
416(4)
8.4.2 Waxman-Smits Equation
420(4)
8.4.3 CEC and Qv Tests
424(6)
8.4.4 Data Utilisation and Assignment
430(3)
8.4.5 Data Reporting Requirements
433(1)
8.4.6 Advantages and Drawbacks/Issues
433(1)
8.4.7 Qv, m* and n* Test Quality Control Issues, Checks and Diagnostics
433(6)
8.5 Alternative Method for Saturation Exponent Determination
439(5)
References
444(3)
Recommended Reading
447(2)
9 Capillary Pressure 449(70)
9.1 Introduction
449(3)
9.2 Primary Drainage Capillary Pressure
452(1)
9.3 High Speed Centrifuge
453(18)
9.3.1 Sample Preparation
454(1)
9.3.2 Key Processes
455(3)
9.3.3 Test Procedures (Primary Drainage)
458(4)
9.3.4 Data Reporting Requirements
462(9)
9.4 Porous Plate (Semi-Permeable Membrane): Primary Drainage
471(13)
9.4.1 Sample Preparation
472(1)
9.4.2 Key Processes
472(2)
9.4.3 Test Procedures
474(4)
9.4.4 Alternatives to Porous Plate Membranes
478(1)
9.4.5 Data Reporting Requirements
479(5)
9.5 Mercury-Air (MICP)
484(17)
9.5.1 Sample Preparation
486(1)
9.5.2 Test Equipment
486(2)
9.5.3 Test Procedures
488(2)
9.5.4 Pore Throat Size Distribution
490(3)
9.5.5 Typical Output
493(1)
9.5.6 Data Reporting Requirements
493(8)
9.6 Capillary Pressure Methods: Equilibration Times
501(1)
9.7 Summary of Drainage Capillary Pressure Methods
501(1)
9.8 Data Corrections
502(14)
9.8.1 Closure Corrections
502(6)
9.8.2 Stress Corrections
508(1)
9.8.3 Clay-Bound Water Corrections
508(2)
9.8.4 Fluid Corrections
510(3)
9.8.5 J Function
513(3)
References
516(1)
Recommended Reading
517(2)
10 Relative Permeability 519(136)
10.1 Introduction
520(23)
10.1.1 Section Outline
520(1)
10.1.2 Definitions
521(2)
10.1.3 Irreducible Water Saturation
523(2)
10.1.4 Residual Oil Saturations: Water-Oil System
525(2)
10.1.5 Residual Oil Saturations: Gas-Oil System
527(1)
10.1.6 Residual Gas Saturation: Water-Gas System
528(2)
10.1.7 Critical Gas Saturation: Gas-Oil System
530(1)
10.1.8 Critical Gas Saturation: Water-Gas System
530(2)
10.1.9 Critical Water Saturation
532(1)
10.1.10 Critical Oil Saturation: Gas Condensate Systems
533(2)
10.1.11 Wettability
535(6)
10.1.12 Corey Exponents
541(2)
10.2 Measurement Techniques
543(11)
10.2.1 USS Tests
543(2)
10.2.2 SS Tests
545(2)
10.2.3 Centrifuge Tests
547(1)
10.2.4 Curve Definition as a Function of Test Method
547(1)
10.2.5 Test Equipment
548(3)
10.2.6 In Situ Saturation Monitoring (ISSM)
551(3)
10.3 Test Data Interpretation Methodology
554(11)
10.3.1 Unsteady State
554(3)
10.3.2 Steady State
557(1)
10.3.3 Centrifuge
557(1)
10.3.4 Flow Rate and Capillary End Effects
558(4)
10.3.5 Coreflood Simulation
562(3)
10.4 Sample Selection, Test State and Test Conditions
565(7)
10.4.1 Sample Selection
565(3)
10.4.2 Test State
568(1)
10.4.3 Overburden Stress
568(1)
10.4.4 Initial Water Saturation
569(3)
10.5 Measurement Descriptions
572(62)
10.5.1 Unsteady State Water-Oil Relative Permeability (USSWO)
574(10)
10.5.2 Steady State Water-Oil Relative Permeability (SSWO)
584(5)
10.5.3 Centrifuge Water-Oil Relative Permeability (CentKrWO)
589(3)
10.5.4 Unsteady State Gas-Oil Relative Permeability (USSGO)
592(6)
10.5.5 Steady State Gas-Oil Relative Permeability (SSGO)
598(5)
10.5.6 Centrifuge Gas-Oil Relative Permeability (CentKrGO)
603(3)
10.5.7 Gas-Oil Relative Permeability Curve Generation
606(1)
10.5.8 Unsteady State Gas-Water Relative Permeability (USSGW)
607(3)
10.5.9 Steady State Gas-Water Relative Permeability (SSGW)
610(3)
10.5.10 Unsteady State Water-Gas Relative Permeability (USSWG)
613(5)
10.5.11 Steady State Water-Gas Relative Permeability (SSWG)
618(4)
10.5.12 Centrifuge Water-Gas Relative Permeability (CentKrWG)
622(4)
10.5.13 Residual Gas Saturation: Imbibition Centrifuge Capillary Pressure (Sgr-CentPc)
626(3)
10.5.14 Counter-current Imbibition Residual (Trapped) Gas Saturation (CCI-Sgr)
629(5)
10.6 Critical Gas Saturation (Depressurisation)
634(5)
10.6.1 Sample Preparation
635(1)
10.6.2 Test Equipment
635(1)
10.6.3 Test Procedures
636(3)
10.7 Experimental Data Provision
639(4)
10.7.1 Samples and Fluids (for All Tests)
639(1)
10.7.2 Drainage Capillary Pressure (Desaturation to Swir)
640(1)
10.7.3 Centrifuge Relative Permeability (Water-Oil, Gas-Oil, Decane-Water)
641(1)
10.7.4 Counter-Current Imbibition
642(1)
10.7.5 USS and SS Flood Tests (Water-Oil, Gas-Oil and Water-Gas)
642(1)
10.8 Summary and Recommendations
643(7)
10.8.1 Oil Reservoirs
644(3)
10.8.2 Gas and Gas Condensate Reservoirs
647(3)
References
650(1)
Recommended Reading
651(4)
11 Nuclear Magnetic Resonance (NMR) 655(16)
11.1 Introduction
655(2)
11.2 Nuclear Spin Relaxation in Rocks
657(2)
11.3 NMR Relaxation and Pore Size
659(2)
11.4 Porosity from NMR
661(1)
11.5 Clay-Bound Water
662(1)
11.6 Permeability Estimation
662(1)
11.7 NMR Tests on Core
663(5)
11.7.1 Sample Preparation
663(1)
11.7.2 Key Processes
664(1)
11.7.3 Test Equipment
664(1)
11.7.4 Recommended NMR Measurement Parameters
665(1)
11.7.5 Test Procedures
666(1)
11.7.6 Data Reporting Requirements
667(1)
11.8 NMR Core Measurement Summary
668(1)
References
668(1)
Recommended Reading
669(2)
12 Geomechanics Tests 671(110)
12.1 Introduction
672(1)
12.2 Sample Selection and Preparation
673(8)
12.2.1 Test Sites
674(4)
12.2.2 Sample Orientation
678(1)
12.2.3 Plugging Fluids
679(1)
12.2.4 Sample Dimensions
679(1)
12.2.5 Sample Saturation
680(1)
12.3 Unconfined Compressive Strength Tests
681(6)
12.3.1 Purpose and Sample Requirements
681(1)
12.3.2 Test Equipment
681(1)
12.3.3 Test Procedures
682(1)
12.3.4 Data Utilisation
682(1)
12.3.5 Data Reporting Requirements
683(1)
12.3.6 Advantages and Drawbacks/Issues
683(1)
12.3.7 UCS Quality Control Issues, Checks and Diagnostics
684(3)
12.4 Triaxial Compression Strength Tests
687(19)
12.4.1 Purpose and Sample Requirements
687(1)
12.4.2 Test Equipment
688(1)
12.4.3 Test Procedures
688(7)
12.4.4 Data Utilisation
695(5)
12.4.5 Data Reporting Requirements
700(1)
12.4.6 Advantages and Drawbacks/Issues
700(1)
12.4.7 Triaxial Test Quality Control Issues, Checks and Diagnostics
700(6)
12.5 Triaxial Testing of Shales
706(11)
12.5.1 Purpose and Sample Requirements
706(1)
12.5.2 Sample Preparation
706(3)
12.5.3 Test Equipment
709(1)
12.5.4 Test Procedures
709(3)
12.5.5 Data Utilisation
712(1)
12.5.6 Data Reporting Requirements
713(1)
12.5.7 Advantages and Drawbacks/Issues
714(1)
12.5.8 Shale Triaxial Test Quality Control Issues, Checks and Diagnostics
714(3)
12.6 Thick-Wall Cylinder Tests
717(11)
12.6.1 Purpose and Sample Requirements
717(2)
12.6.2 Test Equipment
719(3)
12.6.3 Test Procedures (Standard TWC)
722(1)
12.6.4 Data Utilisation
722(2)
12.6.5 Data Reporting Requirements
724(1)
12.6.6 Advantages and Drawbacks/Issues
724(1)
12.6.7 TWC Test Quality Control Issues, Checks and Diagnostics
725(3)
12.7 Tensile Strength Tests
728(4)
12.7.1 Purpose and Sample Requirements
728(1)
12.7.2 Test Equipment and Procedures
729(1)
12.7.3 Data Utilisation
730(1)
12.7.4 Data Reporting Requirements
731(1)
12.7.5 Advantages and Drawbacks/Issues
731(1)
12.7.6 Tensile Strength Test Quality Control Issues, Checks and Diagnostics
732(1)
12.8 Acoustic Velocity (Travel Time) Tests
732(7)
12.8.1 Purpose and Sample Requirements
732(1)
12.8.2 Sample Preparation
733(1)
12.8.3 Test Equipment
733(2)
12.8.4 Test Procedures
735(1)
12.8.5 Data Utilisation
735(1)
12.8.6 Data Reporting Requirements
736(1)
12.8.7 Advantages and Drawbacks/Issues
736(1)
12.8.8 ATT Test Quality Control Issues, Checks and Diagnostics
736(3)
12.9 DSCA Tests
739(7)
12.9.1 Purpose and Sample Requirements
739(1)
12.9.2 Test Equipment
739(1)
12.9.3 Test Procedures
740(2)
12.9.4 Data Utilisation
742(2)
12.9.5 Data Reporting Requirements
744(1)
12.9.6 Advantages and Drawbacks/Issues
744(1)
12.9.7 DSCA Test Quality Control Issues, Checks and Diagnostics
744(2)
12.10 Pore Volume Compressibility Tests
746(15)
12.10.1 Purpose and Compressibility Definitions
746(1)
12.10.2 Compressibility Test Loading Conditions
747(4)
12.10.3 Sample Preparation
751(1)
12.10.4 Uniaxial Ko Test Equipment
751(1)
12.10.5 Uniaxial Ko Test Procedures
751(3)
12.10.6 Data Utilisation
754(3)
12.10.7 Data Reporting Requirements
757(1)
12.10.8 Advantages and Drawbacks/Issues
757(1)
12.10.9 Uniaxial Ko Compressibility Test Quality Control Issues, Checks and Diagnostics
757(4)
12.11 Particle Size Analysis Tests
761(15)
12.11.1 Purpose
761(1)
12.11.2 Mechanical Particle Size Analysis
762(7)
12.11.3 Laser Particle Size Analysis
769(7)
References
776(2)
Recommended Reading
778(3)
13 Example of a Core Analysis Programme 781(30)
13.1 Introduction
781(1)
13.2 Core Analysis Focal Point
782(1)
13.3 Design and Management
783(2)
13.4 Lithological Considerations for RCA and SCAL
785(2)
13.4.1 Clean Consolidated Sandstones
785(1)
13.4.2 Unconsolidated Sandstones
785(1)
13.4.3 Shaly Sands
786(1)
13.4.4 Carbonates
786(1)
13.4.5 Vuggy Carbonates
786(1)
13.4.6 Low-Permeability Reservoirs
787(1)
13.4.7 Fractured Reservoirs
787(1)
13.5 Routine Core Analysis
787(6)
13.5.1 Recommended RCA Tests
789(4)
13.6 SCAL Programme
793(18)
13.6.1 Gas Field
793(8)
13.6.2 Oil Field
801(10)
Index 811
Colin McPhee is widely recognised as an industry expert in core analysis, petrophysics, geomechanics, and formation damage. His 40 years experience includes major integrated petrophysics and geomechanics projects for fields in Asia, the Middle East, Europe, Africa and the North Sea. Currently, Colin is Global Technical Head for Geomechanics and Rock properties for LR Senergy, advising clients on petrophysical and geomechanical aspects of field development, asset evaluation and well construction.

After working as a wellsite geologist in the North Sea then a geotechnical engineer, Colin joined the Department of Petroleum Engineering in Heriot Watt University in Edinburgh in 1980 where he was responsible for technical and operational supervision of departmental research projects, involving petrophysical core analysis and fluid flow in porous media. He later joined Edinburgh Petroleum Services where he managed its core analysis laboratory equipment division and core testing laboratory, and developed one of the first core analysis audit and laboratory management consultancies in the world. Since then he has managed over 200 core analysis programmes for Helix RDS and LR Senergy and has audited over 50,000 SCAL measurements . His active promotion of closer cooperation between stakeholders and core analysis vendors and his innovative solutions in SCAL data interpretation has ensured that core data are more reliable, robust and representative. Colin developed an industry-leading, independent training course in core analysis data acquisition and utilisation in 1990 and has now taught over 100 courses to over 1500 industry professionals, worldwide. Colin has written several technical papers, regularly presents at industry conferences worldwide and has been a Technical Editor for the Society of Petroleum Engineers Formation Evaluation publication. He was a SPE Distinguished Lecturer in 2010-2011, lecturing on core analysis. Colin has a BSc in applied geology from Strathclyde University and a masters in civil engineering from Glasgow University.

Jules Reed is Senergys Global Core Analysis Manager and has over 20 years experience in routine and special core analysis and coreflooding studies gained with Core Laboratories, Corex UK, ResLab, and most recently, Weatherford Labs where he was Technical Director, Core Services. He has specialized in product development, data quality control, training and design and interpretation of specialist coreflood/dynamic test studies (including CO2, WAG, EOR and IOR). Jules has held several board positions in the Society of Core Analysts including VP Technology and President, and was Chapter Chairman of SPE Trondheim Section Izaskun Zubizaretta is currently a Principal Core Analysis Specialist with Senergy and has 14 years experience in the interpretation and performance of core analysis, being involved in project management programmes and core data analysis for national oil companies as well as several independent operators.