Preface |
|
ix | |
|
Chapter 1 Simple Quadrilaterals |
|
|
1 | (30) |
|
|
1 | (4) |
|
1.2 The Varignon parallelogram |
|
|
5 | (2) |
|
1.3 The quadrilateral law |
|
|
7 | (4) |
|
1.4 Diagonal midpoints, the Newton line, and Anne's theorem |
|
|
11 | (3) |
|
1.5 Area formulas and inequalities |
|
|
14 | (7) |
|
|
21 | (2) |
|
1.7 Equilic quadrilaterals |
|
|
23 | (3) |
|
|
26 | (5) |
|
Chapter 2 Quadrilaterals and Their Circles |
|
|
31 | (32) |
|
|
31 | (1) |
|
2.2 Cyclic quadrilaterals |
|
|
32 | (3) |
|
2.3 Ptolemy's theorem and its consequences |
|
|
35 | (4) |
|
2.4 The diagonals of a cyclic quadrilateral |
|
|
39 | (2) |
|
2.5 Brahmagupta's formula |
|
|
41 | (3) |
|
2.6 Maltitudes and the anticenter of a cyclic quadrilateral |
|
|
44 | (1) |
|
2.7 Tangential quadrilaterals and Newton's theorem |
|
|
45 | (4) |
|
2.8 Bicentric quadrilaterals |
|
|
49 | (3) |
|
2.9 Extangential quadrilaterals and Urquhart's theorem |
|
|
52 | (6) |
|
|
58 | (5) |
|
Chapter 3 Diagonals of Quadrilaterals |
|
|
63 | (26) |
|
|
63 | (1) |
|
3.2 Orthodiagonal quadrilaterals |
|
|
64 | (7) |
|
3.3 Equidiagonal quadrilaterals |
|
|
71 | (2) |
|
|
73 | (5) |
|
|
78 | (4) |
|
3.6 Midsquare quadrilaterals |
|
|
82 | (2) |
|
|
84 | (1) |
|
|
84 | (5) |
|
Chapter 4 Properties of Trapezoids |
|
|
89 | (18) |
|
|
89 | (2) |
|
4.2 Pythagorean-like theorems for trapezoids |
|
|
91 | (3) |
|
4.3 Trapezoid area and the bimedians |
|
|
94 | (1) |
|
|
95 | (2) |
|
|
97 | (2) |
|
4.6 Trilateral trapezoids |
|
|
99 | (2) |
|
|
101 | (3) |
|
|
104 | (3) |
|
Chapter 5 Applications of Trapezoids |
|
|
107 | (20) |
|
|
107 | (5) |
|
5.2 Trapezoids and the Hermite-Hadamard inequality |
|
|
112 | (3) |
|
5.3 Trapezoidal reptiles and infinite series |
|
|
115 | (2) |
|
|
117 | (3) |
|
5.5 Right trapezoids and the Erdos-Mordell inequality |
|
|
120 | (5) |
|
|
125 | (2) |
|
Chapter 6 Garfield Trapezoids and Rectangles |
|
|
127 | (16) |
|
|
127 | (1) |
|
6.2 Inequalities for means |
|
|
128 | (2) |
|
6.3 Diophantus of Alexandria's sum of squares identity and the Cauchy-Schwarz inequality |
|
|
130 | (3) |
|
6.4 Trigonometric identities |
|
|
133 | (4) |
|
6.5 Arctangent identities |
|
|
137 | (2) |
|
|
139 | (4) |
|
|
143 | (18) |
|
|
143 | (2) |
|
7.2 Some basic parallelogram theorems |
|
|
145 | (3) |
|
7.3 Pappus's area theorem |
|
|
148 | (1) |
|
7.4 Bhaskara and parallelograms |
|
|
149 | (2) |
|
7.5 The area of a parallelogram as a determinant |
|
|
151 | (3) |
|
7.6 Parallelograms in space |
|
|
154 | (1) |
|
7.7 The mediant property and Simpson's paradox |
|
|
155 | (2) |
|
|
157 | (4) |
|
|
161 | (24) |
|
|
161 | (1) |
|
|
161 | (3) |
|
8.3 Reciprocal rectangles |
|
|
164 | (3) |
|
|
167 | (4) |
|
8.5 Silver and other metallic rectangles |
|
|
171 | (2) |
|
|
173 | (6) |
|
|
179 | (6) |
|
|
185 | (20) |
|
|
185 | (1) |
|
|
186 | (1) |
|
9.3 The bride's chair and the Vecten configuration |
|
|
187 | (6) |
|
9.4 Inscribing squares in triangles |
|
|
193 | (1) |
|
9.5 Squared squares and related objects |
|
|
194 | (4) |
|
|
198 | (1) |
|
|
199 | (6) |
|
Chapter 10 Special Quadrilaterals |
|
|
205 | (16) |
|
|
205 | (1) |
|
10.2 Concave quadrilaterals |
|
|
205 | (5) |
|
10.3 Complex quadrilaterals |
|
|
210 | (4) |
|
|
214 | (3) |
|
10.5 Saccheri and Lambert quadrilaterals |
|
|
217 | (1) |
|
|
218 | (3) |
|
Chapter 11 Quadrilateral Numbers |
|
|
221 | (16) |
|
|
221 | (1) |
|
11.2 Square and oblong numbers |
|
|
221 | (5) |
|
11.3 Square sums of two consecutive square numbers |
|
|
226 | (2) |
|
11.4 Trapezoidal and polite numbers |
|
|
228 | (5) |
|
|
233 | (4) |
|
Solutions to the Challenges |
|
|
237 | (36) |
|
|
237 | (3) |
|
|
240 | (4) |
|
|
244 | (2) |
|
|
246 | (3) |
|
|
249 | (3) |
|
|
252 | (3) |
|
|
255 | (3) |
|
|
258 | (5) |
|
|
263 | (4) |
|
|
267 | (2) |
|
|
269 | (4) |
Appendix: A Quadrilateral Glossary |
|
273 | (4) |
Credits and Permissions |
|
277 | (2) |
Bibliography |
|
279 | (6) |
Index |
|
285 | |