Muutke küpsiste eelistusi

E-raamat: Cornucopia of Quadrilaterals

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 78,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A Cornucopia of Quadrilaterals collects and organizes hundreds of beautiful and surprising results about four-sided figures--for example, that the midpoints of the sides of any quadrilateral are the vertices of a parallelogram, or that in a convex quadrilateral (not a parallelogram) the line through the midpoints of the diagonals (the Newton line) is equidistant from opposite vertices, or that, if your quadrilateral has an inscribed circle, its center lies on the Newton line. There are results dating back to Euclid: the side-lengths of a pentagon, a hexagon, and a decagon inscribed in a circle can be assembled into a right triangle (the proof uses a quadrilateral and circumscribing circle); and results dating to Erdos: from any point in a triangle the sum of the distances to the vertices is at least twice as large as the sum of the distances to the sides. The book is suitable for serious study, but it equally rewards the reader who dips in randomly. It contains hundreds of challenging four-sided problems. Instructors of number theory, combinatorics, analysis, and geometry will find examples and problems to enrich their courses. The authors have carefully and skillfully organized the presentation into a variety of themes so the chapters flow seamlessly in a coherent narrative journey through the landscape of quadrilaterals. The authors' exposition is beautifully clear and compelling and is accessible to anyone with a high school background in geometry.
Preface ix
Chapter 1 Simple Quadrilaterals
1(30)
1.1 Introduction
1(4)
1.2 The Varignon parallelogram
5(2)
1.3 The quadrilateral law
7(4)
1.4 Diagonal midpoints, the Newton line, and Anne's theorem
11(3)
1.5 Area formulas and inequalities
14(7)
1.6 Van Aubel's theorem
21(2)
1.7 Equilic quadrilaterals
23(3)
1.8 Challenges
26(5)
Chapter 2 Quadrilaterals and Their Circles
31(32)
2.1 Introduction
31(1)
2.2 Cyclic quadrilaterals
32(3)
2.3 Ptolemy's theorem and its consequences
35(4)
2.4 The diagonals of a cyclic quadrilateral
39(2)
2.5 Brahmagupta's formula
41(3)
2.6 Maltitudes and the anticenter of a cyclic quadrilateral
44(1)
2.7 Tangential quadrilaterals and Newton's theorem
45(4)
2.8 Bicentric quadrilaterals
49(3)
2.9 Extangential quadrilaterals and Urquhart's theorem
52(6)
2.10 Challenges
58(5)
Chapter 3 Diagonals of Quadrilaterals
63(26)
3.1 Introduction
63(1)
3.2 Orthodiagonal quadrilaterals
64(7)
3.3 Equidiagonal quadrilaterals
71(2)
3.4 Kites
73(5)
3.5 Rhombi
78(4)
3.6 Midsquare quadrilaterals
82(2)
3.7 Summary
84(1)
3.8 Challenges
84(5)
Chapter 4 Properties of Trapezoids
89(18)
4.1 Introduction
89(2)
4.2 Pythagorean-like theorems for trapezoids
91(3)
4.3 Trapezoid area and the bimedians
94(1)
4.4 Trapezoid diagonals
95(2)
4.5 Isosceles trapezoids
97(2)
4.6 Trilateral trapezoids
99(2)
4.7 Right trapezoids
101(3)
4.8 Challenges
104(3)
Chapter 5 Applications of Trapezoids
107(20)
5.1 Trapezoidal means
107(5)
5.2 Trapezoids and the Hermite-Hadamard inequality
112(3)
5.3 Trapezoidal reptiles and infinite series
115(2)
5.4 Fibonacci trapezoids
117(3)
5.5 Right trapezoids and the Erdos-Mordell inequality
120(5)
5.6 Challenges
125(2)
Chapter 6 Garfield Trapezoids and Rectangles
127(16)
6.1 Introduction
127(1)
6.2 Inequalities for means
128(2)
6.3 Diophantus of Alexandria's sum of squares identity and the Cauchy-Schwarz inequality
130(3)
6.4 Trigonometric identities
133(4)
6.5 Arctangent identities
137(2)
6.6 Challenges
139(4)
Chapter 7 Parallelograms
143(18)
7.1 Introduction
143(2)
7.2 Some basic parallelogram theorems
145(3)
7.3 Pappus's area theorem
148(1)
7.4 Bhaskara and parallelograms
149(2)
7.5 The area of a parallelogram as a determinant
151(3)
7.6 Parallelograms in space
154(1)
7.7 The mediant property and Simpson's paradox
155(2)
7.8 Challenges
157(4)
Chapter 8 Rectangles
161(24)
8.1 Introduction
161(1)
8.2 Characterizations
161(3)
8.3 Reciprocal rectangles
164(3)
8.4 Golden rectangles
167(4)
8.5 Silver and other metallic rectangles
171(2)
8.6 Fibonacci rectangles
173(6)
8.7 Challenges
179(6)
Chapter 9 Squares
185(20)
9.1 Introduction
185(1)
9.2 Characterizations
186(1)
9.3 The bride's chair and the Vecten configuration
187(6)
9.4 Inscribing squares in triangles
193(1)
9.5 Squared squares and related objects
194(4)
9.6 Pythagorean triples
198(1)
9.7 Challenges
199(6)
Chapter 10 Special Quadrilaterals
205(16)
10.1 Introduction
205(1)
10.2 Concave quadrilaterals
205(5)
10.3 Complex quadrilaterals
210(4)
10.4 Skew quadrilaterals
214(3)
10.5 Saccheri and Lambert quadrilaterals
217(1)
10.6 Challenges
218(3)
Chapter 11 Quadrilateral Numbers
221(16)
11.1 Introduction
221(1)
11.2 Square and oblong numbers
221(5)
11.3 Square sums of two consecutive square numbers
226(2)
11.4 Trapezoidal and polite numbers
228(5)
11.5 Challenges
233(4)
Solutions to the Challenges
237(36)
Chapter 1
237(3)
Chapter 2
240(4)
Chapter 3
244(2)
Chapter 4
246(3)
Chapter 5
249(3)
Chapter 6
252(3)
Chapter 7
255(3)
Chapter 8
258(5)
Chapter 9
263(4)
Chapter 10
267(2)
Chapter 11
269(4)
Appendix: A Quadrilateral Glossary 273(4)
Credits and Permissions 277(2)
Bibliography 279(6)
Index 285
Claudi Alsina, Universitat Politecnica de Catalunya, Barcelona, Spain

Roger B. Nelsen, Lewis & Clark College, Portland, OR