Muutke küpsiste eelistusi

E-raamat: Corona Problem: Connections Between Operator Theory, Function Theory, and Geometry

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The purpose of the corona workshop was to consider the corona problem in both one and several complex variables, both in the context of function theory and harmonic analysis as well as the context of operator theory and functional analysis. It was held in June 2012 at the Fields Institute in Toronto, and attended by about fifty mathematicians. This volume validates and commemorates the workshop, and records some of the ideas that were developed within.





The corona problem dates back to 1941. It has exerted a powerful influence over mathematical analysis for nearly 75 years. There is material to help bring people up to speed in the latest ideas of the subject, as well as historical material to provide background. Particularly noteworthy is a history of the corona problem, authored by the five organizers, that provides a unique glimpse at how the problem and its many different solutions have developed.





There has never been a meeting of this kind, and there has never been a volume of this kind. Mathematiciansboth veterans and newcomerswill benefit from reading this book. This volume makes a unique contribution to the analysis literature and will be a valuable part of the canon for many years to come.
A History of the Corona Problem
1(30)
Ronald G. Douglas
Steven G. Krantz
Eric T. Sawyer
Sergei Treil
Brett D. Wicks
Corona Problem for H∞ on Riemann Surfaces
31(16)
Alexander Brudnyi
Connections of the Corona Problem with Operator Theory and Complex Geometry
47(22)
Ronald G. Douglas
On the Maximal Ideal Space of a Sarason-Type Algebra on the Unit Ball
69(16)
Jorg Eschmeier
A Subalgebra of the Hardy Algebra Relevant in Control Theory and Its Algebraic-Analytic Properties
85(22)
Marie Frentz
Amol Sasane
The Corona Problem in Several Complex Variables
107(20)
Steven G. Krantz
Corona-Type Theorems and Division in Some Function Algebras on Planar Domains
127(26)
Raymond Mortini
Rudolf Rupp
The Ring of Real-Valued Multivariate Polynomials: An Analyst's Perspective
153(24)
Raymond Mortini
Rudolf Rupp
Structure in the Spectra of Some Multiplier Algebras
177(24)
Richard Rochberg
Corona Solutions Depending Smoothly on Corona Data
201(10)
Sergei Treil
Brett D. Wick
On the Taylor Spectrum of A/-Tuples of Analytic Toeplitz Operators on the Polydisk
211
Tavan T. Trent