Muutke küpsiste eelistusi

E-raamat: Correlation Force Spectroscopy for Single Molecule Measurements

  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 30-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319140483
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 30-Mar-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319140483

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This thesis addresses the development of a new force spectroscopy tool, correlation force spectroscopy (CFS) for the measurement of the properties of very small volumes of material (molecular to µm3) at kHz-MHz frequency range. CFS measures the simultaneous thermal fluctuations of two closely-spaced atomic force microscopy (AFM) cantilevers. CFS then calculates the cross-correlation in the thermal fluctuations that gives the mechanical properties of the matter that spans the gap of the two cantilevers. The book also discusses development of CFS, its advantages over AFM, and its application in single molecule force spectroscopy and micro-rheology.
1 Introduction
1(10)
Overview of SMFS Techniques
2(1)
Experiments Using Single-Molecule AFM
3(2)
Limitations of AFM-Based SMFS
5(4)
Summary
9(2)
2 Correlation Force Spectroscopy
11(14)
Correlation Force Spectroscopy: Rationale
11(1)
CFS: Development
12(5)
Laterally Offset Configuration
14(1)
Vertically Offset Configuration
15(2)
Analysis of Correlations Between Two Cantilevers
17(2)
Validation of Fluctuation-Dissipation Theorem for One Cantilever
19(1)
Analysis of Thermal Fluctuations to Obtain Correlations
19(3)
Summary
22(3)
3 Dynamics of Single Molecules
25(14)
Elastic Properties of Single Molecules: Worm-Like Chain and Freely Jointed Chain Models
25(3)
Hydrodynamics of Single Molecules: Dumbbell Model and Rouse Model
28(4)
Internal Friction
32(3)
Rouse with Internal Friction
35(1)
Model of Linear Viscoelasticity of a Semiflexible Chain
36(2)
Summary
38(1)
4 Microrheology with Correlation Force Spectroscopy
39(8)
Existing Techniques of Rheometry
39(1)
Experimental Methods
40(1)
Comparison to FE Analysis
40(2)
Comparison to Simple Harmonic Oscillator Model
42(2)
Summary
44(3)
5 Development of Colloidal Probe Correlation Force Spectroscopy: Case Study
47(16)
Materials and Methods
51(4)
Analysis
53(2)
Results
55(5)
Discussion
60(2)
Summary
62(1)
6 Correlation Force Spectroscopy for Single-Molecule Measurements
63(8)
Effect of the Distance Between Cantilever Tips
63(2)
Harmonic Oscillator Modeling of Vertically Offset Correlation Force Spectroscopy
65(4)
Summary
69(2)
7 Single-Molecule Force Spectroscopy of Dextran
71(12)
Materials and Methods
71(1)
Results
72(8)
Stretching a Dextran Molecule
72(2)
Static Force-Elongation Mode
74(3)
Dynamic CF Mode
77(3)
Discussion
80(1)
Summary
81(2)
8 Single Molecule Force Spectroscopy of Single-Stranded DNA
83(18)
Rationale
83(1)
Introduction
83(3)
Materials and Methods
86(2)
Modal Analysis
88(5)
Results
93(3)
Discussion
96(3)
Summary
99(2)
9 Summary
101(4)
An Overview of
Chapters
101(1)
Future Work
102(3)
Appendices 105(6)
References 111
Milad Radiom received his PhD in Chemical Engineering at Virginia Tech in 2014, after MEng and BSc in Thermal and Fluids Engineering and Mechanical Engineering respectively from Nanyang Technological University and Amirkabir University of Technology. Thereafter, he was appointed as a postdoctoral research associate in Laboratory of Colloid and Surface Chemistry, University of Geneva.  His research interests are physical chemistry of polymers, colloids and surfaces as related to single molecule force spectroscopy, micro-rheology and surface forces.