Muutke küpsiste eelistusi
  • Formaat - EPUB+DRM
  • Hind: 27,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 162 pages
  • Ilmumisaeg: 24-Feb-2023
  • Kirjastus: National Academies Press
  • Keel: eng
  • ISBN-13: 9780309692700

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Steel is a common component of U.S. infrastructure, but that steel can corrode when buried in soil, rock, or fill. Steel corrosion is estimated to cost the United States 3-4 percent of its gross domestic product every year, and it can lead to infrastructure failure, loss of lives, property, disruption of energy and transportation systems, and damage to the environment. Although the mechanisms of steel corrosion are well understood, limited data on subsurface corrosion and the inability to measure corrosivity directly make accurate corrosion prediction through modeling a challenge. When hazardous levels of corrosion does occur, it is difficult to determine whether the cause was related to site selection, engineering decisions, changes in subsurface conditions, or a combination of these factors.



This report explores the state of knowledge and technical issues regarding the corrosion of steel used for earth applications (e.g., for ground stabilization, pipelines, and infrastructure foundations) in unconsolidated earth or rock in different geologic settings. The report summarizes mechanisms of steel corrosion, assesses the state of practice for characterizing factors in the subsurface environment that influence corrosion and corrosion rates, and assesses the efficacy and uncertainties associated with quantitative, field, and laboratory methods for predicting corrosion.



The industries and experts most involved with managing buried steel should collaborate to improve multidisciplinary understanding of the processes that drive buried steel corrosion. Developing a common lexicon related to buried steel corrosion, generating new data on corrosion through collaborative long-term experiments, sharing and managing data, and developing new data analytical techniques to inform infrastructure design, construction, and management decisions are key. Industries, experts, and regulators should collaboratively develop decision support systems that guide site characterization and help manage risk. These systems and new data should undergird a common clearinghouse for data on corrosion of buried steel, which will ultimately inform better and more efficient management of buried steel infrastructure, and protect safety and the environment.

Table of Contents



Front Matter Summary 1 Introduction 2 Fundamentals of Steel Corrosion, Industry Applications and Approaches, and Sources of Corrosion Data 3 Subsurface Environment 4 Corrosion of Buried Steel 5 Corrosion Protection for Buried Steel 6 Standard and Evolving Subsurface Characterization 7 Standard and Evolving Monitoring Practices 8 Predictive Modeling 9 Conclusions and Recommendations References Appendix A: Biographical Sketches of Committee Members Appendix B: Meeting and Workshop Agendas Appendix C: Acronyms and Abbreviations
Summary 1(10)
1 Introduction
11(6)
The Committee's Charge and Interpretation
12(1)
Common Types of Steel Used in Buried Applications
13(2)
Information Gathering and Report Organization
15(2)
2 Fundamentals Of Steel Corrosion, Industry Applications And Approaches, And Sources Of Corrosion Data
17(12)
Fundamentals of Buried Steel Corrosion
17(1)
Buried-Steel Applications
18(2)
General Industry Approaches to Protection Against Steel Corrosion
20(1)
Microorganisms
21(6)
Sources of Corrosion Data
27(2)
3 Subsurface Environment
29(6)
Soil
29(4)
Rock Environments
33(1)
Engineered Fills
33(1)
Grout, Concrete, and Flowable Fill
34(1)
4 Corrosion Of Buried Steel
35(14)
General Corrosion
35(2)
Localized Corrosion Mechanisms for Buried Steel
37(5)
Environmentally Induced Cracking
42(1)
Microbially Influenced Corrosion
43(4)
Relationship Between Corrosion and the Environment
47(2)
5 Corrosion Protection For Buried Steel
49(8)
Physical Barriers
49(2)
Microbially Influenced Corrosion and Coatings
51(1)
Cathodic Protection
52(3)
Control of Environment
55(2)
6 Standard And Evolving Subsurface Characterization
57(20)
Standard Practice Before and During Installation
58(13)
Standard Practice During Operations and After Failure
71(2)
Emerging Practices: Use of Decision Support Tools
73(1)
Aspirational Biocementation Methods for Control of Environment
73(4)
7 Standard And Evolving Monitoring Practices
77(16)
Common Monitoring Techniques
78(12)
Emerging (Aspirational) Opportunities
90(3)
8 Predictive Modeling
93(12)
Empirical Models for Corrosion Rate Based on Subsurface Properties
94(2)
Empirical Models for Metal Loss (Romanoff Models)
96(3)
Analytical and Numerical Modeling for General and Localized Forms of Corrosion
99(1)
Numerical Models for Predicting Stray Current
100(1)
Modeling Cathodic Protection Potential and Current Profiles, Polarization, and Current Density
100(1)
Emerging and Evolving Trends
101(4)
9 Conclusions And Recommendations
105(30)
Improved Communication Through Consistent Terminology
106(1)
Multidisciplinary Research
107(2)
Comprehensive Longitudinal Experimentation
109(2)
Data Analytics
111(2)
Decision Support Systems
113(2)
Indirect Observation and Opportunistic Data Collection
115(2)
A Data Clearinghouse
117(2)
Concluding Thoughts and Moving Forward
119(16)
References
121(14)
Appendixes
A Biographical Sketches of Committee Members
135(4)
B Meeting and Workshop Agendas
139(8)
C Acronyms and Abbreviations
147