Muutke küpsiste eelistusi

E-raamat: Corrosion Control Through Organic Coatings

(Xylem Inc., Sundbyberg, Sweden), (SINTEF Materials & Chemistry, Trondheim, Norway)
  • Formaat: 276 pages
  • Sari: Corrosion Technology
  • Ilmumisaeg: 28-Apr-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781498760737
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 81,89 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 276 pages
  • Sari: Corrosion Technology
  • Ilmumisaeg: 28-Apr-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781498760737
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Corrosion Control Through Organic Coatings, Second Edition provides readers with useful knowledge of the practical aspects of corrosion protection with organic coatings and links this to ongoing research and development. Thoroughly updated and reorganized to reflect the latest advances, this new edition expands its coverage with new chapters on coating degradation, protective properties, coatings for submerged service, powder coatings, and chemical pretreatment. Maintaining its authoritative treatment of the subject, the book reviews such topics as corrosion-protective pigments, waterborne coatings, weathering, aging, and degradation of paint, and environmental impact of commonly used techniques including dry- and wet-abrasive blasting and hydrojetting. It also discusses theory and practice of accelerated testing of coatings to assist readers in developing more accurate tests and determine corrosion protection performance.

Arvustused

"well suited to the needs of its target audience. The new content enhances the original concept and brings material up to date." John Sykes, University of Oxford, United Kingdom

"The book will provide a very useful and comprehensive reference resource for all those working in the field of corrosion protection coatings." Brian Goldie, Goldline Services, Sutton, United Kingdom

"The addition of Ole Knudsen, an author with both strong academic and practical credentials, has enhanced the usefulness to a very major extent of what was already a very informative book. This book is well referenced. It is full of practically useful information. it successfully combines being both an instructional book and an essential reference book in the field." Douglas Mills, University of Northampton, United Kingdom

"this book fulfills its intention of providing theoretical background and examples for practical applications of coatings used for corrosion protection. It can be recommended to those being interested in coatings, serving as an overview on aspects which needs to be considered when working with such systems." Materials and Corrosion, September 2017

Preface xv
Acknowledgments xvii
Authors xix
Chapter 1 Introduction 1(4)
1.1 Scope of the Book
1(1)
1.2 Target Group Description
2(1)
1.3 Coated Metal System
2(2)
References
4(1)
Chapter 2 Protection Mechanisms of Organic Coatings 5(6)
2.1 Barrier against Oxygen and Water
5(1)
2.2 Stabilizing the Passivating Surface Oxide
5(2)
2.3 Cathodic Protection
7(1)
2.4 Passivating the Substrate with Pigments
8(1)
2.5 Durable Protection
8(1)
References
9(2)
Chapter 3 Generic Types of Anticorrosion Coatings 11(20)
3.1 Coating Composition Design
11(1)
3.2 Binder Types
11(1)
3.3 Epoxies
12(4)
3.3.1 Chemistry
12(1)
3.3.2 Ultraviolet Degradation
13(1)
3.3.3 Variety of Epoxy Paints
14(2)
3.3.3.1 Epoxy Mastics
14(1)
3.3.3.2 Solvent-Free Epoxies
15(1)
3.3.3.3 Glass Flake Epoxies
15(1)
3.3.3.4 Epoxy Novolac
15(1)
3.3.4 Health Issues
16(1)
3.4 Acrylics
16(3)
3.4.1 Chemistry
16(1)
3.4.2 Saponification
17(2)
3.4.3 Copolymers
19(1)
3.5 Polyurethanes
19(4)
3.5.1 Moisture-Cure Urethanes
20(1)
3.5.2 Chemical-Cure Urethanes
21(1)
3.5.3 Blocked Polyisocyanates
22(1)
3.5.4 Health Issues
23(1)
3.5.5 Waterborne Polyurethanes
23(1)
3.6 Polyesters
23(1)
3.6.1 Chemistry
23(1)
3.6.2 Saponification
24(1)
3.6.3 Fillers
24(1)
3.7 Alkyds
24(2)
3.7.1 Chemistry
25(1)
3.7.2 Saponification
25(1)
3.7.3 Immersion Behavior
25(1)
3.7.4 Brittleness
26(1)
3.7.5 Darkness Degradation
26(1)
3.8 Polysiloxanes
26(2)
3.8.1 Chemistry
26(1)
3.8.2 Performance of Polysiloxane Coating Systems
27(1)
3.9 Other Binders
28(1)
3.9.1 Epoxy Esters
28(1)
3.9.2 Silicate-Based Inorganic Zinc-Rich Coatings
28(1)
References
29(2)
Chapter 4 Corrosion-Protective Pigments 31(28)
4.1 Zinc Dust
31(6)
4.1.1 Types of Zinc-Rich Paint
32(1)
4.1.2 Protection Mechanisms
33(2)
4.1.3 Topcoating Zinc-Rich Paint or Not
35(1)
4.1.4 Choosing a Zinc-Rich Paint
36(1)
4.2 Phosphates
37(5)
4.2.1 Zinc Phosphates
38(1)
4.2.2 Types of Zinc Phosphates
39(2)
4.2.3 Accelerated Testing and Why Zinc Phosphates Sometimes Fail
41(1)
4.2.4 Aluminum Triphosphate
41(1)
4.2.5 Other Phosphates
42(1)
4.3 Ferrites
42(2)
4.4 Other Inhibitive Pigments
44(3)
4.4.1 Calcium-Exchanged Silica
44(1)
4.4.2 Barium Metaborate
45(1)
4.4.3 Molybdates
45(1)
4.4.4 Silicates
46(1)
4.5 Barrier Pigments
47(4)
4.5.1 Micaceous Iron Oxide
48(1)
4.5.2 Mica
49(1)
4.5.3 Glass
49(1)
4.5.4 Aluminum
50(1)
4.5.5 Zinc Flakes
50(1)
4.5.6 Other Metallic Pigments
50(1)
4.6 Choosing a Pigment
51(1)
4.7 Abandoned Pigments Due to Toxicity
52(4)
4.7.1 Lead-Based Paint
52(3)
4.7.2 Chromates
55(1)
References
56(3)
Chapter 5 Waterborne Coatings 59(12)
5.1 Technologies for Polymers in Water
60(1)
5.1.1 Water-Reducible Coatings and Water-Soluble Polymers
60(1)
5.1.2 Aqueous Emulsion Coatings
60(1)
5.1.3 Aqueous Dispersion Coatings
60(1)
5.2 Water versus Organic Solvents
61(1)
5.3 Latex Film Formation
61(5)
5.3.1 Driving Force of Film Formation
62(1)
5.3.2 Humidity and Latex Cure
63(1)
5.3.3 Real Coatings
64(2)
5.3.3.1 Pigments
64(2)
5.3.3.2 Additives
66(1)
5.4 Minimum Film Formation Temperature
66(1)
5.4.1 Wet MFFT and Dry MFFT
67(1)
5.5 Flash Rusting
67(1)
References
68(3)
Chapter 6 Powder Coatings 71(18)
6.1 Generic Types of Powder Coatings and Range of Use
72(3)
6.1.1 Thermoplastic Powder Coatings
72(1)
6.1.2 Thermosetting Powder Coatings
73(2)
6.2 Powder Production
75(1)
6.3 Application Technology
76(4)
6.3.1 Electrostatic Spraying
76(3)
6.3.2 Fluidized Bed
79(1)
6.3.3 Flame Spraying
80(1)
6.3.4 Flocking Gun
80(1)
6.4 Electrostatic Powder Coating Application Line
80(4)
6.4.1 Racking or Hanging
81(1)
6.4.2 Pretreatment
82(1)
6.4.3 Powder Application
83(1)
6.4.4 Film Formation and Curing
83(1)
6.4.5 Offloading, Inspection, and Packing
84(1)
6.5 Powder Coating of Rebar and Pipelines
84(1)
6.6 Common Errors, Quality Control, and Maintenance
85(2)
6.6.1 Common Errors in Powder Coatings
85(1)
6.6.2 Quality Control
86(1)
6.6.3 Maintenance of Powder Coatings
86(1)
References
87(2)
Chapter 7 Blast Cleaning and Other Heavy Surface Pretreatments 89(20)
7.1 Surface Roughness
90(1)
7.2 Introduction to Blast Cleaning
91(1)
7.3 Dry Abrasive Blasting
92(4)
7.3.1 Metallic Abrasives
92(1)
7.3.2 Naturally Occurring Abrasives
92(1)
7.3.3 By-Product Abrasives
93(2)
7.3.4 Manufactured Abrasives
95(1)
7.4 Wet Abrasive Blasting and Hydrojetting
96(4)
7.4.1 Terminology
96(1)
7.4.2 Inhibitors
97(1)
7.4.3 Advantages and Disadvantages of Wet Blasting
98(1)
7.4.4 Chloride Removal
98(1)
7.4.5 Water Containment
99(1)
7.5 Unconventional Blasting Methods
100(1)
7.5.1 Carbon Dioxide
100(1)
7.5.2 Ice Particles
100(1)
7.5.3 Soda
101(1)
7.6 Testing for Contaminants after Blasting
101(3)
7.6.1 Soluble Salts
101(2)
7.6.2 Hydrocarbons
103(1)
7.6.3 Dust
104(1)
7.7 Dangerous Dust: Silicosis and Free Silica
104(3)
7.7.1 What Is Silicosis?
105(1)
7.7.2 What Forms of Silica Cause Silicosis?
105(1)
7.7.3 What Is a Low-Free-Silica Abrasive?
105(1)
7.7.4 What Hygienic Measures Can Be Taken to Prevent Silicosis?
106(1)
References
107(2)
Chapter 8 Abrasive Blasting and Heavy Metal Contamination 109(14)
8.1 Detecting Contamination
109(3)
8.1.1 Chemical Analysis Techniques for Heavy Metals
110(1)
8.1.2 Toxicity Characteristic Leaching Procedure
110(2)
8.2 Minimizing the Volume of Hazardous Debris
112(2)
8.2.1 Physical Separation
112(1)
8.2.1.1 Sieving
112(1)
8.2.1.2 Electrostatic Separation
112(1)
8.2.2 Low-Temperature Ashing (Oxidizable Abrasive Only)
113(1)
8.2.3 Acid Extraction and Digestion
113(1)
8.3 Methods For Stabilizing Lead
114(3)
8.3.1 Stabilization with Iron
114(1)
8.3.2 Stabilization of Lead through pH Adjustment
115(1)
8.3.3 Stabilization of Lead with Calcium Silicate and Other Additives
116(1)
8.3.3.1 Calcium Silicate
116(1)
8.3.3.2 Sulfides
116(1)
8.4 Debris as Filler in Concrete
117(4)
8.4.1 Problems for Concrete Caused by Contaminated Debris
117(1)
8.4.2 Attempts to Stabilize Blasting Debris with Cement
118(2)
8.4.3 Problems with Aluminum in Concrete
120(1)
8.4.4 Trials with Portland Cement Stabilization
120(1)
8.4.5 Other Filler Uses
120(1)
References
121(2)
Chapter 9 Chemical Surface Pretreatments 123(14)
9.1 Phosphating
123(3)
9.1.1 Formation of the Phosphate Conversion Coating
124(1)
9.1.2 Process Steps
125(1)
9.1.3 Variants of Phosphate Conversion Coatings
125(1)
9.2 Chromate Conversion Coatings: Chromating
126(2)
9.2.1 Formation of the Chromate Conversion Coating
126(1)
9.2.2 Corrosion Protection
127(1)
9.2.3 Chromating Process
127(1)
9.3 Anodizing
128(4)
9.3.1 DC Anodizing Pretreatment Process
129(1)
9.3.2 Anodizing in Coil Coating
130(1)
9.3.3 Structure and Properties of the Oxide Layer
131(1)
9.4 Titanium-and Zirconium-Based Conversion Coatings
132(1)
9.4.1 Formation of the Titanium-Zirconium Layer
132(1)
9.4.2 Process and Properties
133(1)
9.5 Cr(III)-Based Conversion Coatings for Aluminum
133(2)
9.5.1 Formation of the Chromium Oxide Coating
134(1)
9.5.2 Process and Properties
134(1)
References
135(2)
Chapter 10 Adhesion and Barrier Properties of Protective Coatings 137(12)
10.1 Adhesion
137(5)
10.1.1 Adhesion Forces
138(1)
10.1.2 Effect of Surface Roughness on Adhesion
139(1)
10.1.3 Effect of Surface Chemistry on Adhesion
140(1)
10.1.4 Wet Adhesion
141(1)
10.1.5 Important Aspects of Adhesion
141(1)
10.2 Barrier Properties
142(5)
10.2.1 Diffusion in Polymers
142(1)
10.2.2 Water
143(2)
10.2.3 Ions
145(1)
10.2.4 Oxygen
146(1)
10.2.5 Importance of Barrier Properties
146(1)
References
147(2)
Chapter 11 Weathering and Aging of Paint 149(14)
11.1 UV Breakdown
150(3)
11.1.1 Reflectance
151(1)
11.1.2 Transmittance
151(1)
11.1.3 Absorption
151(2)
11.2 Moisture
153(4)
11.2.1 Chemical Breakdown and Weathering Interactions
154(1)
11.2.2 Hygroscopic Stress
154(1)
11.2.3 Blistering
155(8)
11.2.3.1 Alkaline Blistering
156(1)
11.2.3.2 Neutral Blistering
156(1)
11.3 Temperature
157(1)
11.4 Chemical Degradation
158(3)
References
161(2)
Chapter 12 Degradation of Paint by Corrosion 163(20)
12.1 Cathodic Disbonding
163(9)
12.1.1 Parameters Affecting Cathodic Disbonding
164(2)
12.1.2 Adhesion Loss Mechanism
166(1)
12.1.2.1 Dissolution of the Iron Oxide Layer on the Substrate
166(1)
12.1.2.2 Chemical Degradation of the Coating
166(1)
12.1.2.3 Interfacial Failure
166(1)
12.1.3 Transport of Reactants
167(1)
12.1.4 Cathodic Disbonding Mechanism
167(4)
12.1.5 Limiting Cathodic Disbonding
171(1)
12.2 Corrosion Creep
172(5)
12.2.1 Initiation Sites for Corrosion Creep
173(1)
12.2.2 Propagation Mechanisms
174(2)
12.2.3 Limiting Corrosion Creep
176(1)
12.3 Filiform Corrosion
177(3)
12.3.1 Filiform Corrosion Mechanism
177(1)
12.3.2 Filiform Corrosion on Aluminum
178(2)
12.3.3 Filiform Corrosion on Steel
180(1)
References
180(3)
Chapter 13 Duplex Coatings: Organic Coatings in Combination with Metal Coatings 183(16)
13.1 Zinc-Based Duplex Coatings
183(11)
13.1.1 Zinc Coatings
183(2)
13.1.2 Lifetime of Zinc-Based Duplex Coatings: Synergy Effect
185(3)
13.1.3 Protection and Degradation Mechanism for Zinc-Based Duplex Coatings
188(3)
13.1.4 Key to Success: Achieving Durable Zinc-Based Duplex Coatings
191(3)
13.2 Aluminum-Based Duplex Coatings
194(3)
13.2.1 Thermally Sprayed Aluminum
194(1)
13.2.2 TSA Duplex Coatings: A Coating System to Avoid
194(3)
References
197(2)
Chapter 14 Corrosion Testing: Background and Theoretical Considerations 199(20)
14.1 Goal of Accelerated Testing
199(1)
14.2 Accelerated Weathering
200(9)
14.2.1 UV Exposure
201(1)
14.2.2 Moisture
202(1)
14.2.3 Drying
203(3)
14.2.3.1 Faster Corrosion during the Wet-Dry Transition
203(1)
14.2.3.2 Zinc Corrosion-Atmospheric Exposure versus Wet Conditions
204(2)
14.2.3.3 Differences in Absorption and Desorption Rates
206(1)
14.2.4 Temperature
206(1)
14.2.5 Chemical Stress
207(1)
14.2.6 Abrasion and Other Mechanical Stresses
208(1)
14.2.7 Implications for Accelerated Testing
209(1)
14.3 Why There is No Single Perfect Weathering Test
209(3)
14.3.1 Different Sites Induce Different Aging Mechanisms
210(1)
14.3.2 Different Coatings Have Different Weaknesses
211(1)
14.3.3 Stressing the Achilles' Heel
212(1)
14.4 Accelerated Immersion Testing
212(3)
14.4.1 Electrochemical Potential
213(1)
14.4.2 Oxygen Concentration
213(1)
14.4.3 Temperature
213(1)
14.4.4 Electrolyte Composition
214(1)
14.4.5 Reliability of CD Testing
214(1)
14.4.6 Relevance of CD Testing
214(1)
References
215(4)
Chapter 15 Corrosion Testing: Practice 219(28)
15.1 Accelerated Aging Methods and Corrosion Tests
219(7)
15.1.1 ISO 20340 (And NORSOK M-501)
220(1)
15.1.2 ASTM D5894 (And NACE TM0404)
220(1)
15.1.3 Corrosion Tests from the Automotive Industry
221(2)
15.1.3.1 ISO 11997
221(1)
15.1.3.2 Volvo Indoor Corrosion Test or Volvo Cycle
222(1)
15.1.3.3 SAE J2334
222(1)
15.1.4 A Test to Avoid: Kesternich
223(1)
15.1.5 Salt Spray Test
223(2)
15.1.6 Importance of Wet-Dry Cycling
225(1)
15.1.7 Weathering
225(1)
15.1.8 Condensation or Humidity
225(1)
15.2 Evaluation After Accelerated Aging
226(7)
15.2.1 General Corrosion
227(1)
15.2.1.1 Creep from the Scribe
227(1)
15.2.1.2 Other General Corrosion
227(1)
15.2.2 Adhesion
228(4)
15.2.2.1 Difficulty of Measuring Adhesion
228(1)
15.2.2.2 Direct Pull-Off Methods
229(1)
15.2.2.3 Lateral Stress Methods
230(1)
15.2.2.4 Important Aspects of Adhesion
231(1)
15.2.3 Internal Stress in Paint Films
232(1)
15.3 Accelerated Testing of Coatings for Immersion Service
233(1)
15.3.1 ISO 15711
233(1)
15.3.2 NACE TM0115
233(1)
15.3.3 NORSOK M-501 High Temperature CD Test
234(1)
15.4 Advanced Methods for Investigation of Protective Properties and Degradation Mechanisms
234(7)
15.4.1 Barrier Properties
234(2)
15.4.2 Scanning Kelvin Probe
236(1)
15.4.3 Scanning Vibrating Electrode Technique
237(1)
15.4.4 Advanced Analytical Techniques
237(4)
15.4.4.1 Scanning Electron Microscopy
238(1)
15.4.4.2 Atomic Force Microscopy
238(1)
15.4.4.3 Infrared Spectroscopy
238(2)
15.4.4.4 Electron Spectroscopy
240(1)
15.4.4.5 Electrochemical Noise Measurement
240(1)
15.5 Calculating the Amount of Acceleration and Correlations
241(2)
15.5.1 Acceleration Rates
241(1)
15.5.2 Correlation Coefficients or Linear Regressions
242(1)
15.5.3 Mean Acceleration Ratios and Coefficient of Variation
242(1)
References
243(4)
Index 247
Ole Øystein Knudsen received his MSc in chemical engineering at the Norwegian Institute of Technology in 1990, and his PhD in 1998 from the Norwegian University of Science and Technology (NTNU) with a thesis on cathodic disbonding. Since 1998, he has been working with research on coating degradation and corrosion at SINTEF. In 2008, he also became an Adjunct Professor at NTNU, where he teaches courses on protective coatings. Dr. Knudsen lives in Trondheim.

Amy Forsgren received her chemical engineering education at the University of Cincinnati (USA) in 1986. She then did research in coatings for the paper industry for three years before moving to Detroit. Michigan. While there, she spent 6 years in anticorrosion coatings research at Ford Motor Company, before returning to Sweden in 1996 to lead the protective coatings program at the Swedish Corrosion Institute. She is now working in the water and wastewater industry at Xylem Inc. (formerly ITT Water & Wastewater). Mrs. Forsgren lives in Stockholm with her family.