Muutke küpsiste eelistusi

E-raamat: Corrosion Preventive Materials and Corrosion Testing

  • Formaat: 268 pages
  • Ilmumisaeg: 02-Mar-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351588430
  • Formaat - PDF+DRM
  • Hind: 93,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 268 pages
  • Ilmumisaeg: 02-Mar-2020
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351588430

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book provides an extensive coverage of conjugated polymer based nano-composite coatings with advanced anti-corrosive properties. The book gives detailed explanation of corrosion testing methods and techniques to evaluate the corrosion resistance of the coatings. It includes elaborate discussion on classification of corrosion, electrochemistry of corrosion process, theories explaining the mechanism of corrosion and various corrosion testing standards. Electrochemical studies like open circuit potential (OCP) variation with time, potentiodynamic polarization, Electrochemical Impedance Spectroscopy (EIS) and accelerated corrosion testing are highlighted as important tools to extract information about the behavior of coatings under corrosive conditions. The book discusses epoxy-conjugated polymer based novel composite coating formulations, including aniline and o-toluidine, o-anisidine, phenetidine and pentafluoroaniline with appropriate fillers like SiO2, flyash, ZrO2 nanoparticles, and chitosan for the protection of metallic substrates. A general discussion on the self healing mechanism of epoxy-polypyrrole based biopolymer hybrid composite coatings is included in this book. This book provides a critical review on the conjugated polymer based composite coatings with superior corrosion resistance, good mechanical integrity, better adhesion properties and self healing ability under highly aggressive conditions which can be commercially used for the protection of metal substrates from corrosion.
Preface iii
Acknowledgments v
1 Introduction to Corrosion
1(60)
1.1 What is corrosion?
1(1)
1.2 Problems due to corrosion
2(2)
1.3 Classification of corrosion
4(6)
1.3.1 Pitting corrosion
4(1)
1.3.2 Crevice corrosion
5(1)
1.3.3 Galvanic corrosion
6(1)
1.3.4 Erosion corrosion
7(1)
1.3.5 Intergranular corrosion
7(1)
1.3.6 Cracking corrosion
8(1)
1.3.7 Stress corrosion cracking
8(1)
1.3.8 Fatigue corrosion
9(1)
1.4 Electrochemistry of corrosion
10(10)
1.4.1 Thermodynamics aspects of corrosion process (Pourbaix diagram)
14(1)
1.4.2 Kinetic aspects of the corrosion process
15(1)
1.4.2.1 Polarization methods of determination of corrosion rate
15(2)
1.4.2.2 Electrochemical Impedance Spectroscopy (EIS)
17(3)
1.5 Metal corrosion and passive film
20(2)
1.6 Tests for corrosion protection
22(2)
1.6.1 Surface studies
22(1)
1.6.2 Salt spray test
23(1)
1.6.3 Weight loss method
24(1)
1.7 Methods of corrosion protection
24(13)
1.7.1 Materials selection
25(1)
1.7.2 Cathodic and anodic protection
25(2)
1.7.3 Corrosion inhibitor
27(4)
1.7.4 Corrosion resistant coating
31(1)
1.7.5 Paints
31(2)
1.7.6 Metallic coatings
33(2)
1.7.7 Inorganic coatings
35(1)
1.7.8 Conversion coatings
36(1)
1.7.9 Organic coatings
36(1)
1.7.10 Mechanism of protection
36(1)
1.7.11 Barrier protection
37(1)
1.7.12 Ennobling mechanism
37(1)
1.7.13 Self-healing mechanism
37(1)
1.8 Testing methods of coatings
37(7)
1.8.1 Mechanical testing of coating
38(1)
1.8.1.1 Standard test methods for measuring adhesion by tape test
38(1)
1.8.1.2 Knife test
39(1)
1.8.1.3 Tape test
40(1)
1.8.1.4 Cross-cut adhesion test
41(1)
1.8.1.5 Pull-Off" test
41(1)
1.8.1.6 Mandrel bend test
41(2)
1.8.1.7 Taber abrasion resistance test
43(1)
1.8.1.8 Scratch resistance test
44(1)
1.9 New aged smart surface coating
44(11)
1.9.1 Conducting polymer-based coatings
47(1)
1.9.2 Polyaniline and its derivatives
48(4)
1.9.3 Polypyrrole and its derivatives
52(3)
1.10 Conclusion
55(1)
References
56(5)
2 Conducting Polymers
61(40)
2.1 Conducting polymers
61(1)
2.2 Structure of conducting polymers
62(1)
2.3 Methods of doping
63(7)
2.3.1 Chemical doping by charge transfer
64(1)
2.3.2 Electrochemical doping
64(1)
2.3.3 Mechanism of conductivity
65(1)
2.3.4 Polymers with degenerate ground states
65(1)
2.3.5 Polymers with non-degenerate ground states
65(5)
2.4 Poly(3,4-ethylene dioxythiophene) (PEDOT)
70(4)
2.4.1 Synthesis of PEDOT/PSS
71(1)
2.4.2 Mechanism of EDOT to PEDOT/PSS polymerization
71(1)
2.4.2.1 Synthesis of PEDOT in DBSA medium
71(1)
2.4.2.2 Synthesis of PEDOT/MWCNT composites
72(2)
2.4.2.3 PEDOT as corrosion inhibitor
74(1)
2.5 Polyaniline
74(16)
2.5.1 Synthetic routes to polyaniline
76(1)
2.5.2 Chemical oxidative polymerization
76(1)
2.5.3 Mechanism of oxidative polymerization of aniline
77(2)
2.5.4 Electrochemical polymerization of aniline
79(5)
2.5.5 Corrosion protection by conducting polymers
84(6)
2.6 Polypyrrole
90(4)
2.6.1 Polypyrrole as corrosion inhibitor
93(1)
References
94(7)
3 Poly(Aniline-co-Pentafluoroaniline)/SiO2 Composite Based Anticorrosive Coating
101(40)
3.1 Introduction
101(1)
3.2 Mechanism of oxidative polymerization of aniline
102(7)
3.2.1 Preparation of Poly(AN-co-PFA)/SiO2 composites
107(1)
3.2.2 Preparation of Poly(aniline-co-phenetidine)/SiO2 composites
107(2)
3.2.3 Preparation of Poly(aniline-co-o-toluidine) Flyash composites
109(1)
3.3 Development of epoxy formulated copolymer composites coating on mild steel
109(2)
3.4 Characterization of epoxy formulated copolymer composite coated substrate
111(22)
3.4.1 FTIR spectroscopy
111(1)
3.4.2 Thermogravimetric analysis (TGA)
112(2)
3.4.3 Micro-structural analysis
114(3)
3.4.4 Surface wettability test
117(1)
3.4.5 Physico-mechanical testing of coating
118(2)
3.4.6 Corrosion studies of the coated mild steel substrate
120(1)
3.4.6.1 Salt spray test
120(2)
3.4.6.2 Electrochemical studies of the coating
122(1)
3.4.6.2.1 Open Circuit Potential (OCP) versus time
122(2)
3.4.6.2.2 Tafel extrapolation measurement
124(5)
3.4.6.2.3 Electrochemical Impedance Spectroscopy (EIS)
129(4)
3.5 Mechanism of corrosion protection of mild steel coated with polyaniline based copolymer composites
133(2)
3.6 Conclusion
135(1)
References
136(5)
4 Poly(Aniline-co-Pentafluoroaniline)/ZrO2 Nanocomposite Based Anticorrosive Coating
141(33)
4.1 Introduction
141(3)
4.2 Synthesis of zirconia (ZrO2) nanoparticles
144(1)
4.3 Preparation of poly(An-co-PFA)/ZrO2nanocomposites
145(2)
4.4 Development of epoxy formulated poly(An-co-PFA)/ZrO2 nanocomposites coating on mild steel
147(1)
4.5 Characterization of copolymer nanocomposite and epoxy modified copolymer nanocomposite coated substrate
147(7)
4.5.1 Fourier Transform Infrared Spectroscopy (FTIR)
147(1)
4.5.2 X-ray diffraction analysis
148(1)
4.5.3 Thermogravimetric analysis (TGA)
149(1)
4.5.4 Morphological analysis
150(1)
4.5.5 Wettability test (contact angle measurement)
151(3)
4.6 Physico-mechanical properties
154(2)
4.6.1 Cross-cut tape test
154(1)
4.6.2 Taber abrasion and scratch resistance test
154(2)
4.6.3 Mandrel bend test
156(1)
4.7 Corrosion protection performance of the coating
156(12)
4.7.1 Salt spray test
156(3)
4.7.2 Electrochemical studies of the coating
159(1)
4.7.2.1 Open Circuit Potential (OCP) versus time measurement
159(2)
4.7.2.2 Tafel extrapolation measurement
161(3)
4.7.2.3 Electrochemical Impedance Spectroscopy (EIS)
164(4)
4.8 Role of poly(An-co-PFA)/zirconia nanocomposites on metal protection
168(1)
4.9 Conclusions
169(1)
References
170(4)
5 Polypyrrole-Based Composite Coatings
174(38)
5.1 Introduction
174(3)
5.2 Polypyrrole composites and their synthesis routes
177(5)
5.3 Compositional, thermal and micro-structural studies of the PPy-based composites
182(7)
5.3.1 FTIR spectroscopy
182(1)
5.3.2 X-Ray diffraction studies
183(2)
5.3.3 Thermogravimetric analysis (TGA)
185(2)
5.3.4 Micro-structural studies
187(2)
5.4 Electrochemical studies to evaluate corrosion resistance
189(17)
5.4.1 Open Circuit Potential (OCP) versus time
190(3)
5.4.2 Potentiodynamic polarization (Tafel plots)
193(4)
5.4.3 Electrochemical Impedance Spectroscopy (EIS)
197(5)
5.4.4 Self-healing mechanism of the conducting polymer-based composite coatings
202(1)
5.4.5 Corrosion study of the PPy-based composite coatings under accelerated test conditions
203(3)
5.5 Conclusion
206(1)
References
206(6)
6 Polypyrrole/Biopolymer Hybrid Coatings
212(33)
6.1 Introduction of biopolymers
212(5)
6.2 Chitosan: properties and applications
217(1)
6.3 Chitosan-based composite coatings
218(1)
6.4 Conducting polymer/chitosan composite coatings
218(3)
6.5 Electrochemical Impedance studies of PPy/chitosan composites
221(5)
6.6 Brief discussion on polyaniline/chitosan composite coatings
226(7)
6.7 Polypyrrole/gum acacia corrosion inhibitive composite coatings
233(8)
6.8 Conclusion
241(1)
References
242(3)
7 Future Scope and Directions
245(3)
Annexure I List of Abbreviations 248(3)
Index 251(2)
About the Authors 253(2)
Color Plate Section 255
Dr. S.K. Dhawan is an Emeritus Scientist in CSIR-National Physical Laboratory, New Delhi, India and is working on design of conducting polymers for Smart Self Healing Coatings, EMI shielding and ESD. Dr. Dhawan has published 160 papers, filed 12 US & Indian Patents. He has received DST-Lockheed Innovation Award in 2014 for Smart Coating Research.

Dr. Hema Bhandari is Assistant Professor in Department of Chemistry, Maitreyi College, University of Delhi. She obtained her Ph.D. Degree from Indian Institute of Technology, New Delhi and CSIR-NPL, New Delhi. Dr. Hema did her Ph.D. on the topic Conducting copolymers for Corrosion Inhibition and has published 21 research papers, three US patents and published two book chapters.

Dr. Gazala Ruhi is Assistant Professor in Department of Chemistry, Maitreyi College, University of Delhi. She did her Ph.D. from Barkatullah University, Bhopal in the area of high temperature corrosion and has research experience in synthesis of conjugated polymer based nano composites for designing of smart coatings for corrosion protection of steel substrates in saline conditions and accelerated corrosive conditions. She has published 16 papers, two patents and published a book chapter.

Dr. Brij Mohan Singh Bisht is Scientist in National Test House, Ghaziabad under Ministry of Consumer Affairs, Government of India. He obtained his Ph.D. Degree from Uttaranchal University, Dehradun, India and CSIR-NPL, New Delhi, India. Dr. Bisht has done his Ph.D. in the area of Corrosion and published eight research papers and filed two patents in the field of Conducting polymer nanocomposites for protection of mild steel against corrosion.

Dr. Pradeep Sambyal received his Ph.D. in chemical sciences from CSIR-National Physical Laboratory, India (2017). Currently, he is working as a postdoctoral researcher at KIST, South Korea. Dr. Sambyal has published 14 papers and filed three patents. His research focuses on nanomaterials for anticorrosive coatings and EMI shielding.