Preface |
|
iii | |
Acknowledgments |
|
v | |
|
1 Introduction to Corrosion |
|
|
1 | (60) |
|
|
1 | (1) |
|
1.2 Problems due to corrosion |
|
|
2 | (2) |
|
1.3 Classification of corrosion |
|
|
4 | (6) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3.5 Intergranular corrosion |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.3.7 Stress corrosion cracking |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.4 Electrochemistry of corrosion |
|
|
10 | (10) |
|
1.4.1 Thermodynamics aspects of corrosion process (Pourbaix diagram) |
|
|
14 | (1) |
|
1.4.2 Kinetic aspects of the corrosion process |
|
|
15 | (1) |
|
1.4.2.1 Polarization methods of determination of corrosion rate |
|
|
15 | (2) |
|
1.4.2.2 Electrochemical Impedance Spectroscopy (EIS) |
|
|
17 | (3) |
|
1.5 Metal corrosion and passive film |
|
|
20 | (2) |
|
1.6 Tests for corrosion protection |
|
|
22 | (2) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
24 | (1) |
|
1.7 Methods of corrosion protection |
|
|
24 | (13) |
|
1.7.1 Materials selection |
|
|
25 | (1) |
|
1.7.2 Cathodic and anodic protection |
|
|
25 | (2) |
|
1.7.3 Corrosion inhibitor |
|
|
27 | (4) |
|
1.7.4 Corrosion resistant coating |
|
|
31 | (1) |
|
|
31 | (2) |
|
|
33 | (2) |
|
|
35 | (1) |
|
1.7.8 Conversion coatings |
|
|
36 | (1) |
|
|
36 | (1) |
|
1.7.10 Mechanism of protection |
|
|
36 | (1) |
|
1.7.11 Barrier protection |
|
|
37 | (1) |
|
1.7.12 Ennobling mechanism |
|
|
37 | (1) |
|
1.7.13 Self-healing mechanism |
|
|
37 | (1) |
|
1.8 Testing methods of coatings |
|
|
37 | (7) |
|
1.8.1 Mechanical testing of coating |
|
|
38 | (1) |
|
1.8.1.1 Standard test methods for measuring adhesion by tape test |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
1.8.1.4 Cross-cut adhesion test |
|
|
41 | (1) |
|
|
41 | (1) |
|
1.8.1.6 Mandrel bend test |
|
|
41 | (2) |
|
1.8.1.7 Taber abrasion resistance test |
|
|
43 | (1) |
|
1.8.1.8 Scratch resistance test |
|
|
44 | (1) |
|
1.9 New aged smart surface coating |
|
|
44 | (11) |
|
1.9.1 Conducting polymer-based coatings |
|
|
47 | (1) |
|
1.9.2 Polyaniline and its derivatives |
|
|
48 | (4) |
|
1.9.3 Polypyrrole and its derivatives |
|
|
52 | (3) |
|
|
55 | (1) |
|
|
56 | (5) |
|
|
61 | (40) |
|
|
61 | (1) |
|
2.2 Structure of conducting polymers |
|
|
62 | (1) |
|
|
63 | (7) |
|
2.3.1 Chemical doping by charge transfer |
|
|
64 | (1) |
|
2.3.2 Electrochemical doping |
|
|
64 | (1) |
|
2.3.3 Mechanism of conductivity |
|
|
65 | (1) |
|
2.3.4 Polymers with degenerate ground states |
|
|
65 | (1) |
|
2.3.5 Polymers with non-degenerate ground states |
|
|
65 | (5) |
|
2.4 Poly(3,4-ethylene dioxythiophene) (PEDOT) |
|
|
70 | (4) |
|
2.4.1 Synthesis of PEDOT/PSS |
|
|
71 | (1) |
|
2.4.2 Mechanism of EDOT to PEDOT/PSS polymerization |
|
|
71 | (1) |
|
2.4.2.1 Synthesis of PEDOT in DBSA medium |
|
|
71 | (1) |
|
2.4.2.2 Synthesis of PEDOT/MWCNT composites |
|
|
72 | (2) |
|
2.4.2.3 PEDOT as corrosion inhibitor |
|
|
74 | (1) |
|
|
74 | (16) |
|
2.5.1 Synthetic routes to polyaniline |
|
|
76 | (1) |
|
2.5.2 Chemical oxidative polymerization |
|
|
76 | (1) |
|
2.5.3 Mechanism of oxidative polymerization of aniline |
|
|
77 | (2) |
|
2.5.4 Electrochemical polymerization of aniline |
|
|
79 | (5) |
|
2.5.5 Corrosion protection by conducting polymers |
|
|
84 | (6) |
|
|
90 | (4) |
|
2.6.1 Polypyrrole as corrosion inhibitor |
|
|
93 | (1) |
|
|
94 | (7) |
|
3 Poly(Aniline-co-Pentafluoroaniline)/SiO2 Composite Based Anticorrosive Coating |
|
|
101 | (40) |
|
|
101 | (1) |
|
3.2 Mechanism of oxidative polymerization of aniline |
|
|
102 | (7) |
|
3.2.1 Preparation of Poly(AN-co-PFA)/SiO2 composites |
|
|
107 | (1) |
|
3.2.2 Preparation of Poly(aniline-co-phenetidine)/SiO2 composites |
|
|
107 | (2) |
|
3.2.3 Preparation of Poly(aniline-co-o-toluidine) Flyash composites |
|
|
109 | (1) |
|
3.3 Development of epoxy formulated copolymer composites coating on mild steel |
|
|
109 | (2) |
|
3.4 Characterization of epoxy formulated copolymer composite coated substrate |
|
|
111 | (22) |
|
|
111 | (1) |
|
3.4.2 Thermogravimetric analysis (TGA) |
|
|
112 | (2) |
|
3.4.3 Micro-structural analysis |
|
|
114 | (3) |
|
3.4.4 Surface wettability test |
|
|
117 | (1) |
|
3.4.5 Physico-mechanical testing of coating |
|
|
118 | (2) |
|
3.4.6 Corrosion studies of the coated mild steel substrate |
|
|
120 | (1) |
|
|
120 | (2) |
|
3.4.6.2 Electrochemical studies of the coating |
|
|
122 | (1) |
|
3.4.6.2.1 Open Circuit Potential (OCP) versus time |
|
|
122 | (2) |
|
3.4.6.2.2 Tafel extrapolation measurement |
|
|
124 | (5) |
|
3.4.6.2.3 Electrochemical Impedance Spectroscopy (EIS) |
|
|
129 | (4) |
|
3.5 Mechanism of corrosion protection of mild steel coated with polyaniline based copolymer composites |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
136 | (5) |
|
4 Poly(Aniline-co-Pentafluoroaniline)/ZrO2 Nanocomposite Based Anticorrosive Coating |
|
|
141 | (33) |
|
|
141 | (3) |
|
4.2 Synthesis of zirconia (ZrO2) nanoparticles |
|
|
144 | (1) |
|
4.3 Preparation of poly(An-co-PFA)/ZrO2nanocomposites |
|
|
145 | (2) |
|
4.4 Development of epoxy formulated poly(An-co-PFA)/ZrO2 nanocomposites coating on mild steel |
|
|
147 | (1) |
|
4.5 Characterization of copolymer nanocomposite and epoxy modified copolymer nanocomposite coated substrate |
|
|
147 | (7) |
|
4.5.1 Fourier Transform Infrared Spectroscopy (FTIR) |
|
|
147 | (1) |
|
4.5.2 X-ray diffraction analysis |
|
|
148 | (1) |
|
4.5.3 Thermogravimetric analysis (TGA) |
|
|
149 | (1) |
|
4.5.4 Morphological analysis |
|
|
150 | (1) |
|
4.5.5 Wettability test (contact angle measurement) |
|
|
151 | (3) |
|
4.6 Physico-mechanical properties |
|
|
154 | (2) |
|
4.6.1 Cross-cut tape test |
|
|
154 | (1) |
|
4.6.2 Taber abrasion and scratch resistance test |
|
|
154 | (2) |
|
|
156 | (1) |
|
4.7 Corrosion protection performance of the coating |
|
|
156 | (12) |
|
|
156 | (3) |
|
4.7.2 Electrochemical studies of the coating |
|
|
159 | (1) |
|
4.7.2.1 Open Circuit Potential (OCP) versus time measurement |
|
|
159 | (2) |
|
4.7.2.2 Tafel extrapolation measurement |
|
|
161 | (3) |
|
4.7.2.3 Electrochemical Impedance Spectroscopy (EIS) |
|
|
164 | (4) |
|
4.8 Role of poly(An-co-PFA)/zirconia nanocomposites on metal protection |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (4) |
|
5 Polypyrrole-Based Composite Coatings |
|
|
174 | (38) |
|
|
174 | (3) |
|
5.2 Polypyrrole composites and their synthesis routes |
|
|
177 | (5) |
|
5.3 Compositional, thermal and micro-structural studies of the PPy-based composites |
|
|
182 | (7) |
|
|
182 | (1) |
|
5.3.2 X-Ray diffraction studies |
|
|
183 | (2) |
|
5.3.3 Thermogravimetric analysis (TGA) |
|
|
185 | (2) |
|
5.3.4 Micro-structural studies |
|
|
187 | (2) |
|
5.4 Electrochemical studies to evaluate corrosion resistance |
|
|
189 | (17) |
|
5.4.1 Open Circuit Potential (OCP) versus time |
|
|
190 | (3) |
|
5.4.2 Potentiodynamic polarization (Tafel plots) |
|
|
193 | (4) |
|
5.4.3 Electrochemical Impedance Spectroscopy (EIS) |
|
|
197 | (5) |
|
5.4.4 Self-healing mechanism of the conducting polymer-based composite coatings |
|
|
202 | (1) |
|
5.4.5 Corrosion study of the PPy-based composite coatings under accelerated test conditions |
|
|
203 | (3) |
|
|
206 | (1) |
|
|
206 | (6) |
|
6 Polypyrrole/Biopolymer Hybrid Coatings |
|
|
212 | (33) |
|
6.1 Introduction of biopolymers |
|
|
212 | (5) |
|
6.2 Chitosan: properties and applications |
|
|
217 | (1) |
|
6.3 Chitosan-based composite coatings |
|
|
218 | (1) |
|
6.4 Conducting polymer/chitosan composite coatings |
|
|
218 | (3) |
|
6.5 Electrochemical Impedance studies of PPy/chitosan composites |
|
|
221 | (5) |
|
6.6 Brief discussion on polyaniline/chitosan composite coatings |
|
|
226 | (7) |
|
6.7 Polypyrrole/gum acacia corrosion inhibitive composite coatings |
|
|
233 | (8) |
|
|
241 | (1) |
|
|
242 | (3) |
|
7 Future Scope and Directions |
|
|
245 | (3) |
Annexure I List of Abbreviations |
|
248 | (3) |
Index |
|
251 | (2) |
About the Authors |
|
253 | (2) |
Color Plate Section |
|
255 | |