Muutke küpsiste eelistusi

E-raamat: Counterterrorist Detection Techniques of Explosives

Edited by (Professor of Chemistry, University of Rhode Island, Kingston, USA), Edited by (Arizona State University, Center for Bioelectronics and Biosensors, Tempe, USA)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 03-Dec-2021
  • Kirjastus: Elsevier Science Ltd
  • Keel: eng
  • ISBN-13: 9780444641052
  • Formaat - EPUB+DRM
  • Hind: 188,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 03-Dec-2021
  • Kirjastus: Elsevier Science Ltd
  • Keel: eng
  • ISBN-13: 9780444641052

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Counterterrorist Detection Techniques of Explosives, Second Edition covers the most current techniques available for explosive detection. This completely revised volume describes the most updated research findings that will be used in the next generation of explosives detection technologies. New editors Drs. Avi Cagan and Jimmie Oxley have assembled in one volume a series of detection technologies written by an expert group of scientists. The book helps researchers to compare the advantages and disadvantages of all available methods in detecting explosives and, in effect, allows them to choose the correct instrumental screening technology according to the nature of the sample.
  • Covers bulk/remote trace/contact or contact-less detection
  • Describes techniques applicable to indoor (public transportation, human and freight) and outdoor (vehicle) detection
  • Reviews both current techniques and those in advanced stages of development
  • Provides detailed descriptions of every technique, including its principles of operation, as well as its applications in the detection of explosives
Contributors xi
Preface xiii
Introduction xv
1 Ion mobility spectrometry of explosives, the stability of gas phase ions, and prospectives for future explosive trace detectors
C.A. Eiceman
R. Rajapakse
J.A. Stone
1 Introduction
1(5)
1.1 Mobility spectra of explosives
4(2)
2 Thermal decomposition of gaseous ions at ambient pressure
6(4)
2.1 Methods and technology for the determination of decomposition enthalpies
6(4)
3 Ion mobility spectrometry of explosives
10(4)
3.1 Background
10(1)
3.2 Chemistry of ion formation and mobility
10(1)
3.3 Impurities or decomposition products
11(2)
3.4 Mobility selection of product ions of explosives
13(1)
4 Decomposition of chloride adducts of explosives
14(4)
4.1 Nitrate explosives and the displacement of NO-3 from M·CI-
14(1)
4.2 Nitrite explosives dissociating from M·CI-to CI-
15(3)
5 Ions of explosives with exceptional behavior toward thermal decomposition
18(4)
5.1 Case
1. Explosive adduct ions stable up to 200°C
18(1)
5.2 Case
2. Multiple paths for ion decomposition
19(1)
5.3 Case
3. Substances too thermally labile
20(1)
5.4 Summary and lessons on decomposition of gas ions of explosives
21(1)
6 Existing and future ETD designs based on ion mobility methods
22(3)
6.1 Importance and implications of kinetic IMS studies on instrument parameters and design of ETDs
22(2)
6.2 Reactive stages in tandem mobility analyzers to improve selectivity of response
24(1)
7 Conclusions
25(4)
Acknowledgments
25(1)
References
25(4)
2 CT technologies
R.C. Smith
James M. Connelly
1 Introduction
29(1)
2 Features of X-ray CT imaging
29(2)
3 Principles of CT imaging
31(9)
3.1 Single-slice CT
32(3)
3.2 Multislice CT
35(2)
3.3 Fourth generation CT
37(1)
3.4 Dual-energy CT
38(2)
4 CT scanner operation
40(3)
5 CT scanner design considerations
43(4)
References
44(3)
3 Explosives detection by dogs
Kelvin J. Frank Jr.
Howard K. Holness
Kenneth G. Furton
Lauryn E. DeGreeff
1 Introduction
47(1)
2 Process of olfaction
48(3)
2.1 Olfaction in dogs
49(2)
3 Detector dog versus instrumental detection
51(3)
3.1 Detector dog calibration
52(2)
4 Chemical analysis of explosives odors
54(6)
4.1 The odor of explosives
55(4)
4.2 Choosing optimal training materials
59(1)
5 Improvised explosive devices (IEDs) and homemade explosives (HMEs)
60(8)
5.1 Fuel-oxidizer mixtures
60(7)
5.2 Peroxide-based explosives
67(1)
6 Scientific recommendations
68(2)
6.1 The use of training aid mimics
69(1)
6.2 Contamination of training material
69(1)
7 Conclusion
70(8)
References
70(8)
4 Mass spectrometry of explosives
Alexander Yevdokimov
Kevin Colizza
Jimmie C. Oxley
1 Sample preparation
78(3)
2 Liquid-chromatography (LC)
81(1)
3 Solvent choices
81(6)
4 Adducts
87(1)
5 Mass spectrometer (MS)
88(11)
6 Design of Experiment
99(2)
7 Comments about various explosive classes
101(1)
8 Peroxides
102(2)
9 Nitro-containing explosive species
104(2)
10 Nitrate esters
106(8)
11 Nitroarenes (Nitroaromatics)
114(15)
12 Nitramines (Nitramides) and nitrosamines
129(15)
13 Conclusion
144(19)
A Abbreviations and terminology
146(10)
B Chromatographic conditions and most characteristic ion observed in mass spectrometer for selected explosives
156(2)
References
158(5)
5 Trace detection of explosives by ion mobility spectrometry
Reno DeBono
Richard T. Lareau
1 Introduction
163(1)
2 Ion mobility spectrometry
163(37)
2.1 Basic principles
163(1)
2.2 Ion mobility definition
164(3)
2.3 IMS spectra
167(1)
2.4 Resolving power, resolution and peak capacity
168(2)
2.5 Collisional cross-sectional area
170(1)
2.6 Detailed IMS instrument design
170(1)
2.7 Sample inlet
171(4)
2.8 Front end
175(1)
2.9 Air purification system
175(1)
2.10 Ionization
176(4)
2.11 Selective ionization of explosives
180(1)
2.12 Ko vs MW
181(4)
2.13 Commonly observed phenomena in IMS spectra
185(1)
2.14 Calibration
185(3)
2.15 Detection algorithms
188(1)
2.16 Impact of electric field on mobility
189(2)
2.17 Commercial IMS platforms
191(8)
2.18 Informing power and false alarm rates
199(1)
2.19 Sensitivity, limit of detection, and limit of alarm, verification
199(1)
3 Trace detection of explosives
200(21)
3.1 Development and deployment of trace explosive detectors
200(1)
3.2 History of trace explosive detection
201(2)
3.3 Developing ETD platforms for the market
203(1)
3.4 Trace vapor and particle sampling
204(2)
3.5 Trace detection requirements
206(1)
3.6 Characteristics of trace particle residue
207(2)
3.7 Lifetime of trace explosive particles on surfaces
209(2)
3.8 Test and evaluation
211(6)
3.9 Sample swipe materials
217(3)
3.10 Types of surfaces sampled
220(1)
4 Current state and future direction of IMS
221(2)
5 Acronyms/definitions
223(12)
References
226(9)
6 Counterterrorist detection techniques of explosives by vapor sensors (handheld)
Avi Kagan
1 Introduction
235(3)
2 Vapor sensing techniques
238(9)
2.1 Fluorescence
238(1)
2.2 Surface enhanced Raman scattering (SERS)
239(2)
2.3 Ion mobility spectrometry and mass spectrometry
241(1)
2.4 Chemiresistor sensors
242(1)
2.5 Nanosensors
243(1)
2.6 Mid-infrared cavity-ringdown spectroscopy
244(1)
2.7 Microcantilever sensors
244(1)
2.8 Electrochemical vapor sensors
244(2)
2.9 Electromechanical chemical sensors
246(1)
2.10 Pre-concentrator uses
246(1)
3 Summary
247(6)
References
248(5)
7 Longwave infrared spectral reflectance techniques for measuring explosives
Jay P. Giblin
Julia R. Dupuis
1 Introduction hyperspectral infrared explosives detection
253(1)
2 Sensor architectures
254(5)
2.1 Laser based sensors
255(3)
2.2 Thermal sensors
258(1)
3 Spectral signature physical models
259(6)
3.1 Film model
260(1)
3.2 Particulate model
260(1)
3.3 Comments on the reflectance models
261(1)
3.4 Model validation
261(4)
4 Automated detection algorithms
265(1)
5 Summary
266(3)
References
266(3)
8 Laser-induced breakdown spectroscopy for the detection and characterization of explosives
Frank C. De Lucia
Jennifer L. Gottfried
1 Introduction
269(3)
2 Fundamental influences on the LIBS spectra of energetic materials
272(6)
3 Discrimination of energetic materials based on LIBS emission features
278(10)
4 Applications for the detection of energetic and related materials with LIBS
288(11)
5 Characterization of the high-temperature chemistry and performance of energetic materials
299(4)
6 Future outlook
303(12)
References
305(10)
9 X-ray diffraction for explosives detection
Joel A. Greenberg
Joshua Carpenter
1 Introduction
315(2)
2 XRD signatures
317(8)
2.1 Measuring the XRD signal
317(3)
2.2 Structure-property relationships
320(2)
2.3 Sample XRD form factors for explosives
322(2)
2.4 Texturing with explosives
324(1)
3 Explosives discrimination and identification via XRD
325(5)
3.1 Visualizing signatures in XRD space
325(2)
3.2 Classification methods for explosives detection
327(2)
3.3 Choice of features for use in material classification
329(1)
4 X-ray diffraction tomography
330(4)
4.1 XRDT architectures
330(3)
4.2 Correction of the XRDT signal
333(1)
4.3 Multi-modality XRDT
333(1)
4.4 Physics-based synthetic data for XRDT development
333(1)
5 Summary and future prospects
334(5)
Acknowledgments
335(1)
References
335(4)
10 Nuclear techniques to detect explosives
Harry E. Martz Jr.
Steven Glenn
1 Introduction
339(1)
2 Neutron and high-energy photon interactions with matter
340(5)
2.1 Neutron interactions with matter
341(4)
2.2 Photonuclear interactions with matter
345(1)
3 Neutron and high-energy photon sources
345(3)
3.1 Neutron sources
346(2)
3.2 Photon sources
348(1)
4 Radiation detectors
348(3)
4.1 Ionization detectors
349(1)
4.2 Scintillation detectors
350(1)
5 Nuclear interrogation techniques for explosives detection
351(22)
5.1 Neutron techniques
354(13)
5.2 Photonuclear techniques
367(5)
5.3 Radiography performed with nuclear reactions
372(1)
6 Summary
373(1)
7 Future possibilities
373(10)
Acknowledgments
374(1)
References
374(9)
11 Homemade explosives
Jimmie C. Oxley
James L. Smith
Lindsay McLennan
1 Triacetone triperoxide
383(10)
1.1 Properties
383(1)
1.2 Formation of cyclic peroxides
384(3)
1.3 Mechanism of decomposition
387(3)
1.4 Sensitiveness and performance
390(1)
1.5 Performance
390(2)
1.6 Analysis and detection
392(1)
1.7 Destruction
393(1)
1.8 Biological activity
393(1)
2 Hexamethylene triperoxide diamine
393(10)
2.1 Formation
395(5)
2.2 Decomposition
400(1)
2.3 Performance and sensitivity
400(1)
2.4 Analysis
401(1)
2.5 Biological activity
402(1)
3 Nitrate esters
403(9)
3.1 Synthesis/degradation of nitrate esters
404(1)
3.2 Erythritol tetranitrate (ETN)
405(1)
3.3 Xylitol pentanitrate
406(1)
3.4 The hexanitrate esters
407(1)
3.5 Analysis
408(1)
3.6 Decomposition
409(3)
4 Future of HME
412(11)
References
412(11)
Index 423
Dr. Kagan received his B.Sc. degree in Chemical Engineering from Ben-Gurion University (Beer Sheva, Israel) and M.Sc. in Chemical Engineering degree from the Technion, Israel Institute of Technology (Haifa, Israel) and his Ph.D. in chemistry from Arizona State University (Tempe, AZ, USA). Dr. Cagan conducted research, leading the explosives detection team, at the Biodesign Institute OF Arizona State University for 7 years. He was a research Scientist (20062008), an Assistant Research Professor (2008-2012). He continues his research in the Chemistry Department at New Mexico State University since then as a Research Professor and works as a Sub-contractor of the Chemistry Department of University of Rhode Island. Dr. Cagan's main activities involve applications of novel analytical techniques for the detection and analysis of hidden explosives. Dr. Oxley earned a Ph.D. from the University of British Columbia, a Masters from California State U. Northridge, and a BA from U of California, San Diego. She is presently Professor of Chemistry at the University of Rhode Island (URI), where she specializes in the study of energetic materials explosives, propellants, pyrotechnics with a specialty in explosives used by terrorists. In addition to research activities Oxley organizes and teaches specialty classes to professionals working in the field of explosives. She has published well over 100 articles on energetic materials.