Muutke küpsiste eelistusi

E-raamat: Coupled Data Communication Techniques for High-Performance and Low-Power Computing

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Wafer-scale integration has long been the dream of system designers. Instead of chopping a wafer into a few hundred or a few thousand chips, one would just connect the circuits on the entire wafer. What an enormous capability wafer-scale integration would offer: all those millions of circuits connected by high-speed on-chip wires. Unfortunately, the best known optical systems can provide suitably ?ne resolution only over an area much smaller than a whole wafer. There is no known way to pattern a whole wafer with transistors and wires small enough for modern circuits. Statistical defects present a ?rmer barrier to wafer-scale integration. Flaws appear regularly in integrated circuits; the larger the circuit area, the more probable there is a ?aw. If such ?aws were the result only of dust one might reduce their numbers, but ?aws are also the inevitable result of small scale. Each feature on a modern integrated circuit is carved out by only a small number of photons in the lithographic process. Each transistor gets its electrical properties from only a small number of impurity atoms in its tiny area. Inevitably, the quantized nature of light and the atomic nature of matter produce statistical variations in both the number of photons de ning each tiny shape and the number of atoms providing the electrical behavior of tiny transistors. No known way exists to eliminate such statistical variation, nor may any be possible.
Part I Introduction
1 Introduction to Coupled Data Technologies
3(10)
Ron Ho
Robert Drost
1.1 Life has been good
3(1)
1.2 Faster computers tomorrow
4(4)
1.2.1 The end of Moore's Law
7(1)
1.2.2 The arguments against-and for-multiple chips
7(1)
1.3 Coupled data communication
8(5)
1.3.1 This book
9(1)
References
10(3)
Part II Overview of 3D Technologies
2 Power delivery, signaling and cooling for 2D and 3D integrated systems
13(38)
Muhannad Bakir
Gang Huang
Bing Dang
2.1 Introduction
13(1)
2.2 Evolution of conventional silicon ancillary technologies: A brief overview
14(4)
2.3 Novel silicon ancillary technologies
18(13)
2.3.1 Optical I/Os
23(3)
2.3.2 Fluidic I/Os for single and 3D chips
26(5)
2.4 Power delivery for 2D and 3D systems
31(12)
2.4.1 Power delivery and design implications of 2D systems
34(4)
2.4.2 Power delivery and design implications of 3D systems
38(5)
2.5 Conclusion
43(8)
References
45(6)
Part III Coupled Data Technologies
3 Capacitive Coupled Communication
51(28)
David Hopkins
Alex Chow
Frankie Liu
Dinesh D. Patil
Hans Eberle
3.1 Introduction
51(2)
3.2 An electrical model of capacitive interchip communication
53(8)
3.2.1 Crosstalk mitigation
56(1)
3.2.2 Simulation results
56(5)
3.3 Transmitting data
61(1)
3.4 Receiving data
62(6)
3.4.1 Attenuation
62(1)
3.4.2 Loss of DC information
63(2)
3.4.3 Comparators
65(1)
3.4.4 Receiver sizing
66(1)
3.4.5 Timing schemes
67(1)
3.5 Two-dimensional arrays
68(2)
3.6 Measurement results
70(3)
3.6.1 Voltage waterfall
70(1)
3.6.2 Timing waterfall
71(1)
3.6.3 Combined eye diagram
72(1)
3.6.4 BER versus chip separation
72(1)
3.7 Prototype application: a high-radix switch
73(6)
References
77(2)
4 Inductive Coupled Communications
79(48)
Noriyuki Miura
Takayasu Sakurai
Tadahiro Kuroda
4.1 Introduction
79(1)
4.2 Inductive-coupling channel
80(6)
4.2.1 Overview of channel characteristics
80(3)
4.2.2 Range extendability
83(1)
4.2.3 Coupling strength through Si substrate
84(1)
4.2.4 Crosstalk
85(1)
4.3 Inductive-coupling transceiver
86(7)
4.3.1 Signaling
87(2)
4.3.2 Coil design
89(2)
4.3.3 Transceiver circuit design
91(1)
4.3.4 Inter-chip communications
92(1)
4.4 Power reduction techniques
93(7)
4.4.1 Pulse shaping
94(4)
4.4.2 Daisy chain transmitter
98(2)
4.5 High-speed techniques
100(6)
4.5.1 Asynchronous transceiver
101(3)
4.5.2 Burst transmission
104(2)
4.6 Crosstalk reduction techniques
106(5)
4.6.1 Time interleaving
107(2)
4.6.2 Differential coil
109(2)
4.7 Application I: memory stacking
111(7)
4.7.1 Homogenous chip stacking
114(1)
4.7.2 Inductive-coupling up/down repeater
114(3)
4.7.3 Test chip measurement
117(1)
4.8 Application II: processor and memory stacking
118(4)
4.8.1 Heterogenous chip stacking
119(1)
4.8.2 Interface design
120(1)
4.8.3 Test chip measurement
121(1)
4.9 Conclusion
122(5)
References
124(3)
5 Use of AC Coupled Interconnect in Contactless Packaging
127(30)
Paul Franzon
5.1 Introduction: Why use ACCI?
127(2)
5.1.1
Chapter outline
129(1)
5.2 Historical Perspectives
129(1)
5.3 Capacitively Coupled Chip I/O
129(13)
5.3.1 Capacitively Coupled Channel Design
130(7)
5.3.2 ACCI Circuits
137(4)
5.3.3 ACCI Packaging
141(1)
5.4 Mid-channel Capacitively Coupled Structures
142(4)
5.5 Inductively Coupled Connectors and Sockets
146(5)
5.6 Conclusions and Future Perspectives
151(6)
References
152(5)
Part IV Enabling Coupled Data Technologies
6 Aligning chips face-to-face for dense capacitive communication
157(22)
John E. Cunningham
Ashok V. Krishnamoorthy
Ivan Shubin
James G. Mitchell
Xuezhe Zheng
6.1 Introduction
157(1)
6.2 Aligning chips face-to-face
158(10)
6.2.1 Power and ground connections between coupled chips
163(5)
6.3 A low-cost package for capacitive proximity communication
168(3)
6.4 Array packages using bridge chips
171(8)
References
174(5)
Part V Extending Data Coupling Technologies
7 Delivering On-chip Bandwidth Off-chip and Out-of-box with Proximity and Optical Communication
179(14)
Ashok V. Krishnamoorthy
Jon Lexau
Xuezhe Zheng
John E. Cunningham
7.1 Introduction
179(1)
7.2 Photonics as a long-reach interconnect
180(2)
7.3 Photonics on VLSI (optoelectronic VLSI)
182(2)
7.4 Proximity and photonic communication
184(1)
7.5 Test chip results
185(5)
7.6 Conclusion
190(3)
References
191(2)
8 AC Coupled Wireless Power Delivery
193(12)
Makoto Takamiya
Kohei Onizuka
Takayasu Sakurai
8.1 Three dimensional stacked inter-chip wireless power delivery
193(2)
8.2 Prototype of wireless power transmission circuits
195(3)
8.3 Theoretical analysis and circuit improvements
198(5)
8.4 Summary
203(2)
References
204(1)
Index 205