Muutke küpsiste eelistusi

E-raamat: Course on Topological Vector Spaces

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 40,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides an introduction to the theory of topological vector spaces, with a focus on locally convex spaces. It discusses topologies in dual pairs, culminating in the Mackey-Arens theorem, and also examines the properties of the weak topology on Banach spaces, for instance Banach’s theorem on weak*-closed subspaces on the dual of a Banach space (alias the Krein-Smulian theorem), the Eberlein-Smulian theorem, Krein’s theorem on the closed convex hull of weakly compact sets in a Banach space, and the Dunford-Pettis theorem characterising weak compactness in L1-spaces. Lastly, it addresses topics such as the locally convex final topology, with the application to test functions D(O) and the space of distributions, and the Krein-Milman theorem. 

The book adopts an “economic” approach to interesting topics, and avoids exploring all the arising side topics. Written in a concise mathematical style, it is intended primarily for advanced graduate students with a background in elementary functional analysis, but is also useful as a reference text for established mathematicians. 

 


Arvustused

The material of the book is very carefully developed and even includes an introduction into the basics of topological and metric spaces. At the beginning of each chapter, a brief outline of the subjects treated therein is given, while at the end, notes, comments and suggestions for further reading are included. The book ends with an extensive reference list, an index and a very helpful index of notations. (Wolfgang Lusky, Mathematical Reviews, December, 2021)



The book may be highly recommended to all students and researchers with some knowledge of Banach or Hilbert space oriented functional analysis who want to learn its general abstract foundations. (Jochen Wengenroth, zbMATH 1453.46001, 2021)

1 Initial Topology, Topological Vector Spaces, Weak Topology
1(10)
2 Convexity, Separation Theorems, Locally Convex Spaces
11(12)
3 Polars, Bipolar Theorem, Polar Topologies
23(6)
4 The Tikhonov and Alaoglu--Bourbaki Theorems
29(8)
5 The Mackey--Arens Theorem
37(8)
6 Topologies on E", Quasi-barrelled and Barrelled Spaces
45(8)
7 Frechet Spaces and DF-Spaces
53(10)
8 Reflexivity
63(8)
9 Completeness
71(10)
10 Locally Convex Final Topology, Topology of D(Ω)
81(12)
11 Precompact -- Compact -- Complete
93(4)
12 The Banach--Dieudonne and Krein--Smulian Theorems
97(6)
13 The Eberlein--Smulian and Eberlein--Grothendieck Theorems
103(10)
14 Krein's Theorem
113(6)
15 Weakly Compact Sets in L1(μ)
119(6)
16 B"0 = B
125(6)
17 The Krein--Milman Theorem
131(8)
A The Hahn--Banach Theorem 139(4)
B Baire's Theorem and the Uniform Boundedness Theorem 143(4)
References 147(4)
Index of Notation 151(2)
Index 153
Jürgen Voigt is Professor at the Institute of Analysis of the Technische Universität in Dresden, Germany.