Muutke küpsiste eelistusi

E-raamat: Crash Safety of High-Voltage Powertrain Based Electric Vehicles: Electric Shock Risk Prevention

  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 31-Oct-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030889791
  • Formaat - PDF+DRM
  • Hind: 172,28 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 31-Oct-2021
  • Kirjastus: Springer Nature Switzerland AG
  • Keel: eng
  • ISBN-13: 9783030889791

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book systematically introduces fast winding-based discharge strategies used for permanent magnet synchronous machine-based drives in electric vehicles (EVs) after a crash. The contents are from the author's final thesis securing his Ph.D. degree. The book contains seven chapters. Chapter 1 introduces the motivation of the research. Chapter 2 reviews five types of injury hazards that the occupants might suffer during crashes, addressing the high-voltage problem. In Chapters 3, 4, and 5, different winding-based discharge techniques are developed. Chapter 6 discusses the general principles for selecting an effective and efficient discharge technique for a particular EV. The conclusion is drawn in Chapter 7. Some author's achievements are listed at the end of the book. This book introduces professional knowledge about the subject of electrical engineering. It can be used as a reference book for technicians and scholars in this area.
1 Introduction
1(6)
1.1 Motivation
1(3)
1.2 Dissertation Outline
4(3)
2 Review of EV Safety in Crash Conditions
7(22)
2.1 Injury Hazards to Occupants During Crash
7(6)
2.1.1 Physical Hazards
7(3)
2.1.2 Electric Shock Hazards
10(2)
2.1.3 Corrosion, Intoxication and Burn Hazards
12(1)
2.2 Regulatory Activities Concerning Crash
13(5)
2.2.1 Regulations Concerning Physical Hazards
13(4)
2.2.2 Regulations Concerning Electrical Hazards
17(1)
2.2.3 Discussion and Future Challenges About Regulations
17(1)
2.3 Technologies for Reducing Injury Hazards to Occupants After EV Crashes
18(9)
2.3.1 Technologies for Reducing Physical Hazards
18(4)
2.3.2 Technologies for Reducing Electric Shock Hazards
22(4)
2.3.3 Technologies for Reducing RESS-Related Hazards
26(1)
2.4 Valuable Topic Requiring Further Study
27(1)
2.5 Summary
27(2)
3 New Winding-Based Discharge Strategy for EV Powertrains with Extreme Parameters
29(18)
3.1 Introduction
29(2)
3.2 EFM and Mechanism of Winding-Based Discharge Methods
31(3)
3.2.1 Energy Flow Model
31(2)
3.2.2 Mechanism of Winding-Based Discharge Methods
33(1)
3.3 Winding-Based Discharge Strategies for Systems with Extreme Parameters
34(7)
3.3.1 Analysis of Traditional LDA-CI and Classic NDNQ Methods
35(2)
3.3.2 Proposed Winding-Based Discharge Method
37(4)
3.4 Experimental Results
41(5)
3.5 Summary
46(1)
4 Hybrid DC-Bus Capacitor Discharge Strategy for EV Powertrains with Highly Extreme Parameters
47(18)
4.1 Introduction
47(1)
4.2 Mechanism and Defects of Bleeder-Based Discharge Method
48(5)
4.2.1 Mechanism and BR for Standstill Cases
49(1)
4.2.2 Mechanism and BR for Running Case
49(2)
4.2.3 Evaluation of Size and Weight Sacrifice
51(2)
4.3 Proposed Hybrid Discharge Technique
53(7)
4.3.1 Design of BR for Proposed Discharge Method
53(3)
4.3.2 Discharge Modes and Control Algorithms
56(4)
4.4 Experimental Verifications
60(4)
4.5 Summary
64(1)
5 Fault-Tolerant Winding-Based DC-Bus Capacitor Discharge Strategy
65(26)
5.1 Introduction
65(2)
5.2 Design of HSPO Based on SM Theory
67(5)
5.2.1 Machine Modelling
67(1)
5.2.2 Traditional SOSM Observer
67(2)
5.2.3 Proposed Enhanced SOSM Observer
69(3)
5.3 Design of Adaptive SW-LSPO
72(4)
5.3.1 Traditional SW HF Injection Method
72(1)
5.3.2 Impact of Bus Voltage on Sine-Wave HF Injection Method
73(2)
5.3.3 Proposed Adaptive SW-LSPO
75(1)
5.4 Fault-Tolerant Full-Speed Range Discharge
76(6)
5.5 Simulation and Experimental Verifications
82(7)
5.5.1 Simulation Results
82(4)
5.5.2 Experimental Results
86(3)
5.6 Summary
89(2)
6 Winding-Based Discharge Technique Selection Rules Based on Parametric Analysis
91(18)
6.1 Introduction
91(2)
6.2 Selection Principles for NDZQ Method
93(6)
6.2.1 Instant Discharge Occasions
94(2)
6.2.2 Long-Cycle Discharge Occasions
96(2)
6.2.3 Implementation Procedures of Selection Rules for NDZQ Methods
98(1)
6.3 Selection Principles for Piecewise NDNQ Method
99(2)
6.3.1 Criteria for Piecewise NDNQ Method Selection
99(1)
6.3.2 Implementation Procedures
100(1)
6.3.3 Overall Discharge Technique Selection Rules
101(1)
6.4 Case Studies and Results
101(7)
6.4.1 Verifications of Winding-Based Discharge Method Selection Rules
102(5)
6.4.2 Judgement for Discharge Methods in Previous
Chapters
107(1)
6.5 Summary
108(1)
7 Conclusions and Future Work
109(6)
7.1 Conclusions
109(2)
7.2 Future Work
111(4)
Appendix 115(10)
References 125
Prof. Chao Gong was born in February 1991. He obtained his bachelor, master, and Ph.D. degrees in 2014, 2016, and 2021, respectively. He is going to be a tenure-track professor with the School of Automation, Northwestern Polytechnical University. His research interests include electric vehicle powertrains, motor design, and control.