Muutke küpsiste eelistusi

E-raamat: Creating New Medical Ontologies for Image Annotation: A Case Study

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Creating New Medical Ontologies for Image Annotation focuses on the problem of the medical images automatic annotation process, which is solved in an original manner by the authors. All the steps of this process are described in detail with algorithms, experiments and results. The original algorithms proposed by authors are compared with other efficient similar algorithms.

In addition, the authors treat the problem of creating ontologies in an automatic way, starting from Medical Subject Headings (MESH). They have presented some efficient and relevant annotation models and also the basics of the annotation model used by the proposed system: Cross Media Relevance Models. Based on a text query the system will retrieve the images that contain objects described by the keywords.
1 Introduction
1(4)
2 Content-Based Image Retrieval in Medical Images Databases
5(10)
2.1 Introduction
5(2)
2.2 Content-Based Image Retrieval Systems
7(2)
2.3 Content-Based Image Query on Color and Texture Features
9(2)
2.4 Evaluation of the Content-Based Image Retrieval Task
11(1)
2.5 Conclusions
12(3)
References
13(2)
3 Medical Images Segmentation
15(30)
3.1 Introduction
15(1)
3.2 Related Work
16(3)
3.3 Graph-Based Image Segmentation Algorithm
19(13)
3.4 The Color Set Back-Projection Algorithm
32(1)
3.5 The Local Variation Algorithm
33(2)
3.6 Segmentation Error Measures
35(1)
3.7 Experiments and Results
36(4)
3.8 Conclusions
40(5)
References
41(4)
4 Ontologies
45(20)
4.1 Ontologies: A General Overview
45(2)
4.2 Ontology Design and Development Tools
47(4)
4.3 Medical Ontologies
51(3)
4.4 Topic Maps
54(1)
4.5 MeSH Description
55(3)
4.6 Mapping MeSH Content to the Ontology and Graphical Representation
58(7)
References
63(2)
5 Medical Images Annotation
65(26)
5.1 General Overview
65(8)
5.2 Annotation Systems in the Medical Domain
73(2)
5.3 Cross-Media Relevance Model Based on an Object-Oriented Approach
75(10)
5.3.1 Cross-Media Relevance Model Description
75(2)
5.3.2 The Database Model
77(1)
5.3.3 The Annotation Process
78(4)
5.3.4 Measures for the Evaluation of the Annotation Task
82(1)
5.3.5 Experimental Results
83(2)
5.4 Conclusions
85(6)
References
85(6)
6 Semantic-Based Image Retrieval
91(12)
6.1 General Overview
91(6)
6.2 Semantic-Based Image Retrieval Using the Cross-Media Relevance Model
97(2)
6.3 Experimental Results
99(1)
6.4 Conclusions
100(3)
References
101(2)
7 Object Oriented Medical Annotation System
103
7.1 Software System Architecture
103(7)
7.2 Conclusions
110