Muutke küpsiste eelistusi

E-raamat: Cryptology: Classical and Modern

(Appalachian State University, Boone, North Carolina, USA), (Radford University, Virginia, USA), (Appalachian State University, Boone, North Carolina, USA), (Radford University, Virginia, USA)
  • Formaat - EPUB+DRM
  • Hind: 57,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Cryptology: Classical and Modern, Second Edition proficiently introduces readers to the fascinating field of cryptology. The book covers classical methods including substitution, transposition, Alberti, Vigenère, and Hill ciphers. It also includes coverage of the Enigma machine, Turing bombe, and Navajo code. Additionally, the book presents modern methods like RSA, ElGamal, and stream ciphers, as well as the Diffie-Hellman key exchange and Advanced Encryption Standard. When possible, the book details methods for breaking both classical and modern methods.

The new edition expands upon the material from the first edition which was oriented for students in non-technical fields. At the same time, the second edition supplements this material with new content that serves students in more technical fields as well. Thus, the second edition can be fully utilized by both technical and non-technical students at all levels of study. The authors include a wealth of material for a one-semester cryptology course, and research exercises that can be used for supplemental projects. Hints and answers to selected exercises are found at the end of the book.

Features:











Requires no prior programming knowledge or background in college-level mathematics





Illustrates the importance of cryptology in cultural and historical contexts, including the Enigma machine, Turing bombe, and Navajo code





Gives straightforward explanations of the Advanced Encryption Standard, public-key ciphers, and message authentication





Describes the implementation and cryptanalysis of classical ciphers, such as substitution, transposition, shift, affine, Alberti, Vigenère, and Hill
Preface xi
1 Introduction to Cryptology
1(6)
1.1 Basic Terminology
2(1)
1.2 Cryptology in Practice
2(2)
1.3 Why Study Cryptology?
4(3)
2 Substitution Ciphers
7(22)
2.1 Keyword Substitution Ciphers
7(4)
2.1.1 Simple Keyword Substitution Ciphers
8(1)
2.1.2 Keyword Columnar Substitution Ciphers
9(1)
2.1.3 Exercises
10(1)
2.2 Cryptanalysis of Substitution Ciphers
11(8)
2.2.1 Exercises
17(2)
2.3 Playfair Ciphers
19(3)
2.3.1 Exercises
21(1)
2.4 The Navajo Code
22(7)
2.4.1 Exercises
27(2)
3 Transposition Ciphers
29(18)
3.1 Columnar Transposition Ciphers
29(7)
3.1.1 Simple Columnar Transposition Ciphers
30(2)
3.1.2 Keyword Columnar Transposition Ciphers
32(2)
3.1.3 Exercises
34(2)
3.2 Cryptanalysis of Transposition Ciphers
36(5)
3.2.1 Cryptanalysis of Simple Columnar Ciphers
36(2)
3.2.2 Cryptanalysis of Keyword Columnar Ciphers
38(2)
3.2.3 Exercises
40(1)
3.3 ADFGX and ADFGVX Ciphers
41(6)
3.3.1 Exercises
44(3)
4 The Enigma Machine
47(36)
4.1 The Enigma Cipher Machine
47(18)
4.1.1 Exercises
61(4)
4.2 Combinatorics
65(10)
4.2.1 The Multiplication Principle
65(2)
4.2.2 Permutations
67(3)
4.2.3 Combinations
70(2)
4.2.4 Exercises
72(3)
4.3 Security of the Enigma Machine
75(8)
4.3.1 Number of Initial Configurations
75(3)
4.3.2 Background on Cryptanalysis
78(3)
4.3.3 Exercises
81(2)
5 The Turing Bombe
83(84)
5.1 Cribs and Menus
83(7)
5.1.1 Exercises
88(2)
5.2 Loops and Logical Inconsistencies
90(2)
5.2.1 Exercises
92(1)
5.3 Searching for the Correct Configuration
92(22)
5.3.1 Exercises
106(8)
5.4 The Diagonal Board
114(10)
5.4.1 Exercises
120(4)
5.5 The Checking Machine
124(15)
5.5.1 Exercises
130(9)
5.6 Turnovers
139(11)
5.6.1 Exercises
143(7)
5.7 Clonking
150(14)
5.7.1 Exercises
155(9)
5.8 Final Observations
164(3)
5.8.1 Exercises
166(1)
6 Shift and Afflne Ciphers
167(28)
6.1 Modular Arithmetic
167(11)
6.1.1 Exercises
176(2)
6.2 Shift Ciphers
178(5)
6.2.1 Exercises
181(2)
6.3 Cryptanalysis of Shift Ciphers
183(4)
6.3.1 Exercises
185(2)
6.4 Afflne Ciphers
187(3)
6.4.1 Exercises
189(1)
6.5 Cryptanalysis of Affine Ciphers
190(5)
6.5.1 Exercises
192(3)
7 Alberti and Vigenere Ciphers
195(54)
7.1 Alberti Ciphers
196(5)
7.1.1 Exercises
199(2)
7.2 Vigenere Ciphers
201(6)
7.2.1 Vigenere Autokey Ciphers
201(3)
7.2.2 Vigenere Keyword Ciphers
204(1)
7.2.3 Exercises
205(2)
7.3 Probability
207(8)
7.3.1 Exercises
213(2)
7.4 The Friedman Test
215(9)
7.4.1 The Index of Coincidence
216(4)
7.4.2 Estimating the Keyword Length
220(2)
7.4.3 Exercises
222(2)
7.5 The Kasiski Test
224(2)
7.5.1 Exercises
225(1)
7.6 Cryptanalysis of Vigenere Keyword Ciphers
226(23)
7.6.1 Finding the Keyword Length Using Signatures
228(5)
7.6.2 Finding the Keyword Letters Using Scrawls
233(4)
7.6.3 Exercises
237(12)
8 Hill Ciphers
249(34)
8.1 Matrices
249(17)
8.1.1 Definition and Basic Terminology
250(1)
8.1.2 Matrix Operations
251(5)
8.1.3 Identity and Inverse Matrices
256(3)
8.1.4 Matrices with Modular Arithmetic
259(3)
8.1.5 Exercises
262(4)
8.2 Hill Ciphers
266(9)
8.2.1 Exercises
273(2)
8.3 Cryptanalysis of Hill Ciphers
275(8)
8.3.1 Exercises
279(4)
9 RSA Ciphers
283(40)
9.1 Introduction to Public-Key Ciphers
283(3)
9.1.1 Exercises
285(1)
9.2 Introduction to RSA Ciphers
286(3)
9.2.1 Exercises
289(1)
9.3 The Euclidean Algorithm
289(7)
9.3.1 Exercises
294(2)
9.4 Modular Exponentiation
296(5)
9.4.1 Exercises
301(1)
9.5 ASCII
301(2)
9.5.1 Exercise
302(1)
9.6 RSA Ciphers
303(6)
9.6.1 Exercises
307(2)
9.7 Cryptanalysis of RSA Ciphers
309(5)
9.7.1 Exercises
312(2)
9.8 Primality Testing
314(4)
9.8.1 Exercises
317(1)
9.9 Integer Factorization
318(3)
9.9.1 Exercises
321(1)
9.10 The RSA Factoring Challenges
321(2)
9.10.1 Exercises
322(1)
10 ElGamal Ciphers
323(22)
10.1 The Diffie-Hellman Key Exchange
324(4)
10.1.1 Exercises
326(2)
10.2 Discrete Logarithms
328(3)
10.2.1 Exercises
330(1)
10.3 ElGamal Ciphers
331(8)
10.3.1 Exercises
337(2)
10.4 Cryptanalysis of ElGamal Ciphers
339(6)
10.4.1 Exercises
343(2)
11 The Advanced Encryption Standard
345(54)
11.1 Representations of Numbers
345(9)
11.1.1 Binary
346(3)
11.1.2 Hexadecimal
349(3)
11.1.3 Exercises
352(2)
11.2 Stream Ciphers
354(6)
11.2.1 Exercises
358(2)
11.3 AES Preliminaries
360(11)
11.3.1 Plaintext Format
361(1)
11.3.2 TheS-Box
362(2)
11.3.3 Key Format and Generation
364(6)
11.3.4 Exercises
370(1)
11.4 AES Encryption
371(12)
11.4.1 Overview
372(1)
11.4.2 The Operations
373(7)
11.4.3 Exercises
380(3)
11.5 AES Decryption
383(13)
11.5.1 Exercises
393(3)
11.6 AES Security
396(3)
11.6.1 Exercises
397(2)
12 Message Authentication
399(36)
12.1 RSA Signatures
400(9)
12.1.1 Exercises
406(3)
12.2 Hash Functions
409(8)
12.2.1 Exercises
414(3)
12.3 RSA Signatures with Hashing
417(6)
12.3.1 Exercises
420(3)
12.4 The Man-in-the-Middle Attack
423(3)
12.4.1 Exercises
425(1)
12.5 Public-Key Infrastructures
426(9)
12.5.1 Key Formation
427(1)
12.5.2 Web of Trust
428(1)
12.5.3 X.509 Certificates
429(3)
12.5.4 Exercises
432(3)
Bibliography 435(2)
Hints and Answers for Selected Exercises 437(32)
Index 469
Richard E. Klima is a professor in the Department of Mathematical Sciences at Appalachian State University. Prior to Appalachian State, Dr. Klima was a cryptologic mathematician at the National Security Agency. He earned a Ph.D. in applied mathematics from North Carolina State University. His research interests include cryptology, error-correcting codes, applications of linear and abstract algebra, and election theory. Neil P. Sigmon is a professor in the Department of Mathematics and Statistics at Radford University. Dr. Sigmon earned a Ph.D. in applied mathematics from North Carolina State University. His research interests include cryptology, the use of technology to illustrate mathematical concepts, and applications of linear and abstract algebra.