Muutke küpsiste eelistusi

E-raamat: Cultivating String Quartets in Beethoven's Vienna

  • Formaat: 268 pages
  • Ilmumisaeg: 20-Oct-2017
  • Kirjastus: The Boydell Press
  • Keel: eng
  • ISBN-13: 9781787440739
  • Formaat - PDF+DRM
  • Hind: 25,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 268 pages
  • Ilmumisaeg: 20-Oct-2017
  • Kirjastus: The Boydell Press
  • Keel: eng
  • ISBN-13: 9781787440739

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The first detailed contextual study of chamber music in Beethoven's Vienna, at a time when the string quartet reigned supreme among the different chamber genres

This book is the first detailed contextual study of string quartets in Beethoven's Vienna, at a time when that genre reigned supreme among the different chamber genres. Focusing on a key transition period in the early nineteenth century, which bore witness to fundamental shifts in the 'private' sphere of music-making, it explores the 'cultivation' of string quartets by composers, critics, listeners, performers, publishers and patrons. The book highlights these parties' interactions, ideas and ideals, which were central to defining the unique cultures of chamber music arising at this time. We gain fresh insights into publishing and marketing, performance venues and practices, review culture, listening theories and practices, and composition in early nineteenth-century Vienna. Until now, the unique theatricality of chamber music, and the 'social' nature of its discourse, has been poorly appreciated. Cultivating String Quartets in Beethoven's Vienna addresses this misconception and enriches our understanding of this crucial period of change, in which concert life began and previously 'private' music was moved out onto the stage.

NANCY NOVEMBER is Associate Professor in Musicology at the University of Auckland.

Arvustused

A solid, well-researched study of an important genre during a crucial period in its history. * THE NORTHERN MARINER/LE MARIN DU NORD * November's study of earlier nineteenth-century Vienna shows us above all a richly varied, often uncategorisable, musical and social culture founded to a significant degree on sheer pleasure, combining the sensual, the sociable, and the intellectual. It has much to offer musicologists, performers, and Liebhaber und Liebkenner. * BRIO *

List of Illustrations
vi
List of Musical Examples
viii
Acknowledgements x
Introduction 1(1)
1 Defining Chamber Music in the Early Nineteenth Century
6(17)
2 Celebrating Haydn, Cultivating Opera
23(37)
3 Selling String Quartets in Beethoven's Vienna
60(31)
4 Locating String Quartets in Beethoven's Vienna
91(30)
5 Early Nineteenth-Century Performance and Criticism
121(26)
6 Sociability, Showmanship, and Study: `Quartet Friends'
147(29)
7 The String Quartet and the Listener
176(22)
8 Schubert's Song, Beethoven's Theatricality
198
Epilogue: Constructing `Viennese Chamber Music' 222(11)
Bibliography 233(12)
Index 245(312)
Preface v
Chapter 1 First-Order Differential Equations
1(67)
1.1 Definition of Differential Equations
1(9)
1.2 Slope Fields and Solution Curves
10(3)
1.3 Separation of Variables
13(6)
1.4 First-Order Linear DEs
19(8)
1.5 The Substitution Methods
27(11)
1.5.1 Polynomial Substitution
27(2)
1.5.2 Homogeneous DEs
29(1)
1.5.3 Bernoulli DEs
30(8)
1.6 Riccati DEs
38(5)
1.7 The Exact DEs
43(22)
1.8 Summary
65(3)
Chapter 2 Mathematical Models
68(81)
2.1 Newton's Law of Cooling
68(4)
2.2 Torricelli's Law for Draining
72(7)
2.3 The Population Model
79(13)
2.3.1 Introduction
79(1)
2.3.2 General Population Equation
80(2)
2.3.3 The Logistic Equation
82(4)
2.3.4 Doomsday vs. Extinction
86(6)
2.4 Acceleration-Velocity Model
92(31)
2.4.1 Newton's Laws of Motion
92(2)
2.4.2 Velocity and Acceleration Models
94(1)
2.4.3 Air Resistance Model
95(18)
2.4.4 Gravitational Acceleration
113(10)
2.5 Windy Day Plane Landing
123(8)
2.6 A Swimmer's Problem
131(5)
2.7 River Ferryboat-Docking Problem
136(5)
2.8 Equation for Compound Interest
141(8)
Chapter 3 Linear DEs Of Higher Order
149(62)
3.1 Classifications of Linear DEs
149(6)
3.2 Linear Independence
155(9)
3.3 Homogeneous DEs
164(23)
3.3.1 DEs with Constant Coefficients
164(11)
3.3.2 DEs with Variable Coefficients
175(12)
3.4 Inhomogeneous Linear DEs
187(24)
3.4.1 Method of Undetermined Coefficients
187(10)
3.4.2 Variation of Parameters
197(14)
Chapter 4 Systems Of Linear DEs
211(51)
4.1 Basics of System of DEs
211(3)
4.2 First-Order Systems and Applications
214(8)
4.2.1 One Block and One Spring
214(2)
4.2.2 Two Blocks and Two Springs
216(1)
4.2.3 Kirchhoff Circuit Laws
217(5)
4.3 The Substitution Method
222(5)
4.4 The Operator Method
227(5)
4.5 The Eigen-Analysis Method
232(24)
4.6 Examples of Systems of DEs
256(6)
4.6.1 Predator-prey DEs
256(3)
4.6.2 Cascade of Tanks
259(3)
Chapter 5 Laplace Transforms
262(53)
5.1 Laplace Transforms
262(2)
5.2 Properties of Laplace Transforms
264(21)
5.2.1 Laplace Transforms for Polynomials
265(3)
5.2.2 The Translator Property
268(4)
5.2.3 Transforms of Step and Delta Functions
272(4)
5.2.4 The t-multiplication Property
276(3)
5.2.5 Periodic Functions
279(1)
5.2.6 Differentiation and Integration Property
280(5)
5.3 Inverse Laplace Transforms
285(5)
5.4 The Convolution of Two Functions
290(5)
5.5 Applications
295(20)
APPENDIX A SOLUTIONS TO PROBLEMS
315(232)
Chapter 1 First-Order DEs
315(1)
1.1 Definition of DEs
315(5)
1.2 Slope Fields and Solution Curves
320(1)
1.3 Separation of Variables
321(6)
1.4 First-Order Linear DEs
327(10)
1.5 Substitution Methods
337(20)
1.6 Riccati DEs
357(7)
1.7 The Exact DEs
364(12)
Chapter 2 Mathematical Models
376(1)
2.1 Newton's Law of Cooling
376(1)
2.2 Torricelli's Law for Draining
377(8)
2.3 Population Model
385(8)
2.4 Acceleration-Velocity Model
393(20)
2.5 Windy Day Plane Landing
413(9)
2.6 A Swimmer's Problem
422(2)
2.7 River Ferryboat-Docking Problem
424(3)
2.8 Equation for Compound Interest
427(8)
Chapter 3 Linear DEs of Higher Order
435(1)
3.1 Classification of Linear DEs
435(2)
3.2 Linear Independence
437(7)
3.3 Homogeneous DEs
444(14)
3.4 Inhomogeneous Linear DEs
458(23)
Chapter 4 Systems of Linear DEs
481(1)
4.1 Basics of System of DEs
481(1)
4.2 First-Order Systems and Applications
482(5)
4.3 Substitution Method
487(6)
4.4 The Operator Method
493(8)
4.5 The Eigen-Analysis Method
501(8)
4.6 Examples of Systems
509(1)
Chapter 5 Laplace Transforms
510(1)
5.2 Properties of Laplace Transforms
510(6)
5.3 Inverse Laplace Transforms
516(3)
5.4 The Convolution of Two Functions
519(2)
5.5 Applications
521(26)
APPENDIX B LAPLACE TRANSFORMS
547(4)
Selected Laplace Transforms
547(1)
Selected Properties of Laplace Transforms
548(3)
APPENDIX C BASIC FORMULAS
551(2)
APPENDIX D ABBREVIATIONS
553(4)
References 557(2)
Index 559
NANCY NOVEMBER is Professor of Musicology at the University of Auckland. She has published Cultivating String Quartets in Beethoven's Vienna with the Boydell Press (2017), and more recently Opera in the Viennese Home from Mozart to Rossini (CUP, 2024) and Beethoven's Symphonies Arranged for the Chamber (CUP, 2021);