Muutke küpsiste eelistusi

E-raamat: Current Applications of Deep Learning in Cancer Diagnostics

Edited by (Vellore Inst. of Technology, Vellore, India), Edited by
  • Formaat: 187 pages
  • Ilmumisaeg: 22-Feb-2023
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000836158
  • Formaat - PDF+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 187 pages
  • Ilmumisaeg: 22-Feb-2023
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000836158

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book examines deep learning-based approaches in the field of cancer diagnostics, as well as pre-processing techniques, which are essential to cancer diagnostics. Topics include introduction to current applications of deep learning in cancer diagnostics, pre-processing of cancer data using deep learning, review of deep learning techniques in oncology, overview of advanced deep learning techniques in cancer diagnostics, prediction of cancer susceptibility using deep learning techniques, prediction of cancer reoccurrence using deep learning techniques, deep learning techniques to predict the grading of human cancer, different human cancer detection using deep learning techniques, prediction of cancer survival using deep learning techniques, complexity in the use of deep learning in cancer diagnostics, and challenges and future scopes of deep learning techniques in oncology.

1. Contemporary Trends in the Early Detection and Diagnosis of Human Cancers Using Deep Learning Techniques,
2. Cancer Data Pre-Processing Techniques,
3. A Survey on Deep Learning Techniques for Breast, Leukemia and Cervical Cancer Prediction,
4. An Optimized Deep Learning Technique for Detecting Lung Cancer from CT Images,
5. Brain Tumor Segmentation Utilizing MRI Multimodal Images with Deep Learning,
6. Detection and Classification of Brain Tumors Using Light-Weight Convolutional Neural Network,
7. Parallel Dense Skip Connected CNN Approach for Brain Tumor Classification,
8. Liver Tumor Segmentation Using Deep Learning Neural Networks,
9. Deep Learning Algorithms for Classification and Prediction of Acute Lymphoblastic Leukemia,
10. Cervical Pap Smear Screening and Cancer Detection Using Deep Neural Network,
11. Cancer Detection Using Deep Neural Network: Differentiation of Squamous Carcinoma Cells in Oral Pathology,
12. Challenges and Future Scopes in Current Applications of Deep Learning in Human Cancer Diagnostics

Jyotismita Chaki, PhD, is an Associate Professor at School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.

Aysegul Ucar, PhD, is a Professor in Department of Mechatronics Engineering, Firat University, Turkey.