Muutke küpsiste eelistusi

E-raamat: Cut Elimination in Categories

  • Formaat: PDF+DRM
  • Sari: Trends in Logic 6
  • Ilmumisaeg: 18-Apr-2013
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401712071
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Trends in Logic 6
  • Ilmumisaeg: 18-Apr-2013
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401712071
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Proof theory and category theory were first drawn together by Lambek some 30 years ago but, until now, the most fundamental notions of category theory (as opposed to their embodiments in logic) have not been explained systematically in terms of proof theory. Here it is shown that these notions, in particular the notion of adjunction, can be formulated in such as way as to be characterised by composition elimination. Among the benefits of these composition-free formulations are syntactical and simple model-theoretical, geometrical decision procedures for the commuting of diagrams of arrows. Composition elimination, in the form of Gentzen's cut elimination, takes in categories, and techniques inspired by Gentzen are shown to work even better in a purely categorical context than in logic. An acquaintance with the basic ideas of general proof theory is relied on only for the sake of motivation, however, and the treatment of matters related to categories is also in general self contained. Besides familiar topics, presented in a novel, simple way, the monograph also contains new results. It can be used as an introductory text in categorical proof theory.
Preface xi
Introduction 1(1)
Aim and scope
1(2)
Summary of the work
3(2)
An introduction to cut elimination and adjointness
5(12)
Cut elimination
5(1)
Adjointness
6(2)
Cut elimination and adjointness
8(3)
Sequent systems and natural deduction
11(1)
Four types of sequent rules
12(3)
Identity atomization
15(2)
Categories
17(36)
Foundations
17(1)
Morphisms and naturalness
18(1)
Graphs, graph-morphisms and transformations
19(3)
Deductive systems, functors, natural transformations and categories
22(2)
Equivalence of categories
24(2)
Free deductive systems
26(3)
Free categories
29(2)
Cut elimination in free categories
31(5)
Cut Disintegration in free categories
32(2)
Necessary conditions for Cut Disintegration in free categories
34(1)
Particular and Total Cut Elimination
35(1)
Representing deductive systems and categories (Stone, Cayley and Yoneda)
36(17)
Cone graphs
38(1)
From graphs to deductive systems
39(1)
From deductive systems to categories
40(2)
The image of left compositional lifting
42(2)
Left-cone and right-cone graphs
44(2)
Deductive systems and categories in an alternative vocabulary
46(2)
Preorders and monoids
48(1)
The Yoneda Lemma for deductive systems
49(4)
Functors
53(17)
Free functions and free graph-morphisms
53(4)
Free functors
57(3)
Cut elimination with free functors
60(3)
Cut Disintegration with free functors
60(1)
Necessary conditions for Cut Disintegration with free functors
61(2)
Functions redefined
63(7)
The standard definition of function
64(1)
The square of functions
65(2)
Cancellability of relations
67(1)
Functions and adjunction
68(2)
Natural Transformations
70(11)
Antecedental and consequential transformations
70(2)
Formations, formators and natural formations
72(2)
Free formations
74(1)
Free natural formations
75(3)
Cut elimination with free natural transformations
78(3)
Cut Disintegration in free natural formations
78(2)
Necessary conditions for Cut Disintegration in free natural formations
80(1)
Adjunctions
81(68)
Definitions of adjunction
81(12)
Primitive notions in adjunction
82(3)
Hexagonal adjunction
85(1)
Rectangular | adjunction
86(1)
Rectangular \\ adjunction
87(2)
Rectangular // adjunction
89(1)
Triangular adjunction
89(2)
Seesaw adjunction
91(2)
Junctions, junctors and adjunctions
93(2)
Free junctions
95(2)
Free adjunctions
97(3)
Cut elimination in free adjunctions
100(12)
Cut Disintegration in free adjunctions
101(2)
Necessary conditions for Cut Disintegration in free adjunctions
103(1)
Constant-Cut Elimination
104(1)
Cut Molecularization
105(3)
Cut Disintegration with alternative notions of rectangular | adjunction
108(4)
Decidability in free adjunctions
112(12)
Decision problems in free adjunctions
112(2)
Free adjunctions between preorders
114(2)
The commuting problem in free adjunctions generated by arrowless graphs
116(6)
Decidability in free adjunctions generated by arbitrary graphs
122(2)
Rectangular \\ adjunctions
124(5)
Rectangular \\ junctions and adjunctions
125(1)
Cut elimination in free rectangular \\ adjunctions
126(2)
Decidability in free rectangular \\ adjunctions
128(1)
Triangular adjunctions
129(3)
Triangular junctions and adjunctions
129(1)
Cut elimination in free triangular adjunctions
130(1)
Decidability in free triangular adjunctions
131(1)
Cut elimination with other notions of adjunction
132(2)
Model-theoretical normalization in adjunctions
134(7)
A simple decision procedure for commuting in adjunctions
135(4)
Normalizing via links and uniqueness of normal form
139(2)
The maximality of adjunction
141(8)
Comonads
149(46)
Definitions of comonad
149(14)
Standard definition of comonad
149(3)
The delta category
152(1)
Primitive notions in comonad
153(2)
Hexagonal comonads
155(2)
Triangular comonads
157(2)
The Kleisli category
159(2)
The Eilenberg-Moore category
161(2)
Adjunction between adjunctions and comonads
163(7)
The comonad of an adjunction
163(1)
Reflections and coreflections in comonads
164(2)
The adjunctions involving the categories of adjunctions and comonads
166(2)
The category of resolutions
168(2)
Comonographs, comonofunctors and comonads
170(3)
Free comonographs
173(1)
Connectives
174(1)
Free comonads
175(2)
Cut elimination in free comonads
177(5)
Cut Disintegration in free comonads
178(2)
Necessary conditions for Cut Disintegration in free comonads
180(1)
Cut Disintegration with alternative notions of comonad
181(1)
Decidability in free comonads
182(7)
Decision problems in free comonads
182(1)
Free comonads in preorders
183(1)
The commuting problem in free comonads generated by arrowless graphs
184(3)
Decidability in free comonads generated by arbitrary graphs
187(2)
Model-theoretical normalization in comonads
189(3)
The maximality of comonad
192(3)
Cartesian Categories
195(24)
Rectangular | categories with binary product
195(5)
Triangular categories with binary product
200(1)
Cut elimination in free triangular categories with binary product
201(2)
Decidability in free triangular categories with binary product
203(5)
Alternative formulations of rectangular | categories with binary product
208(2)
Cut elimination in free rectangular | categories with binary product
210(3)
The terminal object
213(2)
Cut elimination in free cartesian categories
215(2)
Model-theoretical normalization in cartesian categories
217(2)
Conclusion 219(2)
References 221(4)
Index 225