Preface |
|
xiii | |
Acknowledgements |
|
xvii | |
About the Author |
|
xix | |
1 Basic Concepts |
|
1 | (58) |
|
|
1 | (1) |
|
|
2 | (5) |
|
1.2.1 Infection during a hospital stay |
|
|
2 | (1) |
|
|
3 | (3) |
|
1.2.3 Bone marrow transplantation |
|
|
6 | (1) |
|
|
7 | (6) |
|
|
7 | (1) |
|
1.3.2 Right censored data |
|
|
8 | (2) |
|
1.3.3 Left truncated data |
|
|
10 | (3) |
|
|
13 | (2) |
|
1.5 Non-informative observation schemes? |
|
|
15 | (8) |
|
1.5.1 Some possible solutions |
|
|
20 | (3) |
|
1.6 The examples revisited |
|
|
23 | (5) |
|
1.6.1 Infection during a hospital stay |
|
|
23 | (1) |
|
|
24 | (4) |
|
1.6.3 Bone marrow transplantation |
|
|
28 | (1) |
|
|
28 | (2) |
|
1.8 Basic techniques from survival analysis |
|
|
30 | (13) |
|
1.8.1 Main concepts and theoretical relations |
|
|
30 | (2) |
|
1.8.2 The Kaplan-Meier product-limit estimator |
|
|
32 | (4) |
|
1.8.2.1 Confidence intervals |
|
|
34 | (2) |
|
1.8.3 Nonparametric group comparisons |
|
|
36 | (1) |
|
1.8.4 Cox proportional hazards model |
|
|
37 | (3) |
|
1.8.5 Counting process format |
|
|
40 | (3) |
|
|
43 | (1) |
|
|
44 | (6) |
|
1.11 R code for classical survival analysis |
|
|
50 | (6) |
|
1.11.1 The aidssi data set |
|
|
50 | (1) |
|
1.11.2 Define time and status information |
|
|
51 | (1) |
|
1.11.3 Perform calculations |
|
|
51 | (1) |
|
1.11.4 Summary of outcome |
|
|
52 | (3) |
|
|
55 | (1) |
|
|
56 | (3) |
2 Competing Risks; Nonparametric Estimation |
|
59 | (46) |
|
|
59 | (1) |
|
2.2 Theoretical relations |
|
|
60 | (3) |
|
2.2.1 The multi-state approach; cause-specific hazards |
|
|
60 | (2) |
|
2.2.2 The subdistribution approach |
|
|
62 | (1) |
|
2.3 Estimation based on cause-specific hazard |
|
|
63 | (5) |
|
2.4 Estimation: the subdistribution approach |
|
|
68 | (11) |
|
2.4.1 Estimation with complete follow-up |
|
|
70 | (1) |
|
2.4.2 A special choice for Γ and φ |
|
|
71 | (2) |
|
2.4.3 The ECDF and PL forms |
|
|
73 | (3) |
|
|
74 | (1) |
|
|
74 | (2) |
|
2.4.4 Interpretation of the weighted estimators |
|
|
76 | (3) |
|
2.5 Standard errors and confidence intervals |
|
|
79 | (4) |
|
2.6 Log-rank tests and other subgroup comparisons |
|
|
83 | (2) |
|
2.7 Summary; three principles of interpretability |
|
|
85 | (3) |
|
|
88 | (4) |
|
|
92 | (9) |
|
2.9.1 Nonparametric estimation of Fk |
|
|
92 | (8) |
|
2.9.1.1 The Aalen-Johansen form |
|
|
92 | (4) |
|
2.9.1.2 The weighted product-limit form |
|
|
96 | (4) |
|
|
100 | (1) |
|
|
101 | (4) |
3 Intermediate Events; Nonparametric Estimation |
|
105 | (38) |
|
3.1 Introduction; multi-state models |
|
|
105 | (2) |
|
3.2 Main concepts and theoretical relations |
|
|
107 | (4) |
|
3.2.1 Basic framework and definitions |
|
|
107 | (4) |
|
|
111 | (4) |
|
3.3.1 Data representation |
|
|
111 | (1) |
|
3.3.2 Nelson-Aalen and Aalen-Johansen estimator |
|
|
111 | (4) |
|
3.4 Example: HIV, SI, AIDS and death |
|
|
115 | (10) |
|
|
116 | (1) |
|
|
117 | (8) |
|
3.5 Summary; some alternative approaches |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (14) |
|
|
130 | (4) |
|
|
134 | (4) |
|
|
138 | (3) |
|
|
141 | (2) |
4 Regression; Cause-Specific/Transition Hazard |
|
143 | (40) |
|
|
143 | (1) |
|
4.2 Regression on cause-specific hazard: basic structure |
|
|
144 | (2) |
|
4.3 Combined analysis and type-specific covariables |
|
|
146 | (7) |
|
4.3.1 Same results in one analysis |
|
|
147 | (2) |
|
4.3.2 Type-specific covariables |
|
|
149 | (2) |
|
4.3.3 Effects equal over causes |
|
|
151 | (1) |
|
4.3.4 Proportional baseline hazards |
|
|
152 | (1) |
|
4.4 Why does the stacked approach work? |
|
|
153 | (3) |
|
4.4.1 Cause as stratum variable |
|
|
153 | (2) |
|
4.4.2 Effects equal over causes |
|
|
155 | (1) |
|
4.4.3 Proportional baseline hazards |
|
|
155 | (1) |
|
4.5 Multi-state regression models for transition hazards |
|
|
156 | (11) |
|
4.5.1 Combined analyses: assume effects to be equal |
|
|
159 | (1) |
|
4.5.2 Proportional baseline hazards |
|
|
160 | (4) |
|
4.5.3 Dual role of intermediate states |
|
|
164 | (1) |
|
4.5.4 Beyond the Markov model: effect of transition time |
|
|
165 | (2) |
|
|
167 | (1) |
|
4.6 Example: causes of death in HIV infected individuals |
|
|
167 | (9) |
|
4.6.1 Analysis using well-defined contrasts |
|
|
172 | (4) |
|
|
176 | (1) |
|
|
177 | (2) |
|
|
179 | (1) |
|
|
180 | (3) |
5 Regression; Translation to Cumulative Scale |
|
183 | (30) |
|
|
183 | (1) |
|
5.2 From cause-specific/transition hazard to probability |
|
|
184 | (4) |
|
|
184 | (3) |
|
|
187 | (1) |
|
5.3 Regression on subdistribution hazard |
|
|
188 | (11) |
|
5.3.1 Choice of weight function |
|
|
191 | (1) |
|
5.3.2 Estimation of standard error |
|
|
192 | (1) |
|
5.3.3 Time-varying covariables |
|
|
192 | (3) |
|
|
195 | (4) |
|
5.4 Multinomial regression |
|
|
199 | (1) |
|
|
200 | (2) |
|
|
202 | (1) |
|
|
202 | (7) |
|
5.7.1 From cause-specific/transition hazard to probability |
|
|
202 | (4) |
|
5.7.2 Regression on subdistribution hazard |
|
|
206 | (2) |
|
5.7.3 Proportional odds model |
|
|
208 | (1) |
|
|
209 | (4) |
|
5.8.1 Multi-state analysis |
|
|
209 | (4) |
6 Epilogue |
|
213 | (8) |
|
6.1 Which type of quantity to choose? |
|
|
213 | (4) |
|
|
217 | (4) |
Bibliography |
|
221 | (10) |
Appendix: Answers to Exercises |
|
231 | (14) |
Index |
|
245 | |