Muutke küpsiste eelistusi

E-raamat: Data Analytics and Psychometrics

Edited by , Edited by , Edited by
  • Formaat: 248 pages
  • Sari: The MARCES Book Series
  • Ilmumisaeg: 01-Dec-2018
  • Kirjastus: Information Age Publishing
  • ISBN-13: 9781641133289
  • Formaat - PDF+DRM
  • Hind: 69,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 248 pages
  • Sari: The MARCES Book Series
  • Ilmumisaeg: 01-Dec-2018
  • Kirjastus: Information Age Publishing
  • ISBN-13: 9781641133289

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book encourages using data mining methodologies to address psychometric challenges in education, statistics & computer science. It explores process data, learning analytics & data mining for security & cheating detection. The book includes theoretical & practical insights, with applications in K-12, higher education & beyond.



The general theme of this book is to encourage the use of relevant methodology in data mining which is or could be applied to the interplay of education, statistics and computer science to solve psychometric issues and challenges in the new generation of assessments. In addition to item response data, other data collected in the process of assessment and learning will be utilized to help solve psychometric challenges and facilitate learning and other educational applications. Process data include those collected or available for collection during the process of assessment and instructional phase such as responding sequence data, log files, the use of help features, the content of web searches, etc. Some book chapters present the general exploration of process data in large-scale assessment. Further, other chapters also address how to integrate psychometrics and learning analytics in assessment and survey, how to use data mining techniques for security and cheating detection, how to use more assessment results to facilitate student’s learning and guide teacher’s instructional efforts. The book includes both theoretical and methodological presentations that might guide the future in this area, as well as illustrations of efforts to implement big data analytics that might be instructive to those in the field of learning and psychometrics. The context of the effort is diverse, including K-12, higher education, financial planning, and survey utilization. It is hoped that readers can learn from different disciplines, especially those who are specialized in assessment, would be critical to expand the ideas of what we can do with data analytics for informing assessment practices.

1 On Integrating Psychometrics and Learning Analytics in Complex Assessments
1(52)
Robert J. Mislevy
2 Exploring Process Data in Problem-Solving Items in Computer-Based Large-Scale Assessments: Case Studies in PISA and PIAAC
53(24)
Qiwei He
Matthias von Davier
Zhuangzhuang Han
3 The Use of Data Mining Techniques to Detect Cheating
77(32)
Sarah L. Toton
Dennis D. Maynes
4 Selected Applications of Data Science in Cyber Security
109(20)
Yue (Richard) Xie
5 Assessing Learner-Driven Constructs in Informal Learning Environments: Synergies Created by the Nexus of Psychometrics, Learning Analytics, and Educational Data Mining
129(48)
Lori C. Bland
6 Measuring Rater Effectiveness: New Uses of Value-Added Modeling in Competency-Based Education
177(18)
B. Brian Kuhlman
7 Ranking Documents in Online Enterprise Social Network
195(10)
Alex H. Wang
Umeshwar Dayal
8 Methods for Measuring Learning Evaluation in the Context of E-Learning
205(26)
Matthew Pietrowski
Roopa Sanwardeker
David Witkowski
9 High Level Strategic Approaches for Conducting Big Data Studies in Assessment
231(16)
Manfred M. Straehle
Liberty J. Munson
Austin Fossey
Emily Kim
10 Integrating Survey and Learning Analytics Data for a Better Understanding of Engagement in MOOCs
247
Evgenia Samoilova
Florian Keusch
Frauke Kreuter