Muutke küpsiste eelistusi

E-raamat: Data-driven Generation of Policies

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This Springer Brief presents a basic algorithm that provides a correct solution to finding an optimal state change attempt, as well as an enhanced algorithm that is built on top of the well-known trie data structure. It explores correctness and algorithmic complexity results for both algorithms and experiments comparing their performance on both real-world and synthetic data. Topics addressed include optimal state change attempts, state change effectiveness, different kind of effect estimators, planning under uncertainty and experimental evaluation. These topics will help researchers analyze tabular data, even if the data contains states (of the world) and events (taken by an agent) whose effects are not well understood. Event DBs are omnipresent in the social sciences and may include diverse scenarios from political events and the state of a country to education-related actions and their effects on a school system. With a wide range of applications in computer science and the social sciences, the information in this Springer Brief is valuable for professionals and researchers dealing with tabular data, artificial intelligence and data mining. The applications are also useful for advanced-level students of computer science.
1 Introduction and Related Work
1(8)
1.1 Preliminaries on Event KBs
2(3)
1.2 Related Work
5(4)
References
6(3)
2 Optimal State Change Attempts
9(10)
2.1 Effect Estimators
12(1)
2.2 State Change Effectiveness
13(1)
2.3 Optimal State Change Attempts
14(2)
2.4 Basic Algorithms for Computing OSCAs
16(3)
References
18(1)
3 Different Kinds of Effect Estimators
19(12)
3.1 Learning Algorithms as Effect Estimators
19(1)
3.2 Data Selection Effect Estimators
20(2)
3.3 Computing OSCAs with Data Selection Effect Estimators
22(2)
3.4 Trie-Enhanced Optimal State Change Attempts (TOSCA)
24(7)
3.4.1 Reducing Trie Size by Bucketing Values
29(1)
3.4.2 Annotated Tries
29(1)
References
29(2)
4 A Comparison with Planning Under Uncertainty
31(6)
4.1 Obtaining an MDP from the Specification of an OSCA Problem
32(5)
References
35(2)
5 Experimental Evaluation
37(10)
5.1 Question 1: Which Effect Estimator Gives the Most Accurate Results?
37(2)
5.2 Question 2: Which Techniques Scale Best?
39(4)
5.3 Question 3: Which Techniques Provide the Best Running Time as the Number of Attributes and Their Domain Size Increases?
43(1)
5.4 Question 4: Which Algorithms Perform Best with Real-World Data?
44(3)
References
45(2)
6 Conclusions
47(2)
Index 49