|
|
1 | (8) |
|
1.1 Linking individuals, traits, and population dynamics |
|
|
1 | (1) |
|
1.2 Survey of research applications |
|
|
2 | (1) |
|
|
3 | (3) |
|
1.3.1 Mathematical prerequisites |
|
|
4 | (1) |
|
1.3.2 Statistical prerequisites and data requirements |
|
|
5 | (1) |
|
1.3.3 Programming prerequisites |
|
|
5 | (1) |
|
1.4 Notation and nomenclature |
|
|
6 | (3) |
|
2 Simple Deterministic IPM |
|
|
9 | (48) |
|
2.1 The individual-level state variable |
|
|
9 | (1) |
|
2.2 Key assumptions and model structure |
|
|
10 | (2) |
|
2.3 From life cycle to model: specifying a simple IPM |
|
|
12 | (5) |
|
|
15 | (2) |
|
2.4 Numerical implementation |
|
|
17 | (2) |
|
2.5 Case study 1A: A monocarpic perennial |
|
|
19 | (13) |
|
2.5.1 Summary of the demography |
|
|
19 | (2) |
|
2.5.2 Individual-based model (IBM) |
|
|
21 | (1) |
|
2.5.3 Demographic analysis using lm and glm |
|
|
22 | (2) |
|
2.5.4 Implementing the IPM |
|
|
24 | (2) |
|
2.5.5 Basic analysis: projection and asymptotic behavior |
|
|
26 | (4) |
|
2.5.6 Always quantify your uncertainty! |
|
|
30 | (2) |
|
2.6 Case study 2A: Ungulate |
|
|
32 | (9) |
|
2.6.1 Summary of the demography |
|
|
33 | (1) |
|
2.6.2 Individual-based model |
|
|
34 | (1) |
|
2.6.3 Demographic analysis |
|
|
35 | (1) |
|
2.6.4 Implementing the IPM |
|
|
36 | (3) |
|
|
39 | (2) |
|
|
41 | (8) |
|
|
42 | (1) |
|
2.7.2 Demographic rate models |
|
|
42 | (3) |
|
2.7.3 Implementation: choosing the size range |
|
|
45 | (3) |
|
2.7.4 Implementation: the number of mesh points |
|
|
48 | (1) |
|
|
49 | (1) |
|
2.9 Appendix: Probability Densities and the Change of Variables Formula |
|
|
49 | (3) |
|
2.10 Appendix: Constructing IPMs when more than one census per time year is available |
|
|
52 | (5) |
|
3 Basic Analyses 1: Demographic Measures and Events in the Life Cycle |
|
|
57 | (30) |
|
3.1 Demographic quantities |
|
|
57 | (8) |
|
|
58 | (4) |
|
3.1.2 Age-specific vital rates |
|
|
62 | (1) |
|
|
63 | (2) |
|
3.2 Life cycle properties and events |
|
|
65 | (9) |
|
3.2.1 Mortality: age and size at death |
|
|
66 | (4) |
|
3.2.2 Reproduction: who, when, and how much? |
|
|
70 | (3) |
|
|
73 | (1) |
|
3.3 Case study 1B: Monocarp life cycle properties and events |
|
|
74 | (8) |
|
|
74 | (1) |
|
3.3.2 Mortality: age and size at death calculations |
|
|
75 | (3) |
|
3.3.3 Reproduction: who, when, and how much? |
|
|
78 | (4) |
|
3.4 Appendix: Derivations |
|
|
82 | (5) |
|
4 Basic Analyses 2: Prospective Perturbation Analysis |
|
|
87 | (24) |
|
|
87 | (1) |
|
4.2 Sensitivity and elasticities |
|
|
88 | (1) |
|
4.3 Sensitivity analysis of population growth rate |
|
|
88 | (8) |
|
4.3.1 Kernel-level perturbations |
|
|
89 | (4) |
|
4.3.2 Vital rate functions |
|
|
93 | (1) |
|
4.3.3 Parameters and lower-level functions |
|
|
94 | (2) |
|
4.4 Case Study 2B: Ungulate population growth rate |
|
|
96 | (10) |
|
4.4.1 Kernel-level perturbations |
|
|
96 | (2) |
|
4.4.2 Vital rate functions |
|
|
98 | (5) |
|
4.4.3 Parameters and lower-level functions |
|
|
103 | (3) |
|
4.5 Sensitivity analysis of life cycle properties and events |
|
|
106 | (2) |
|
4.6 Case Study 2B (continued): Ungulate life cycle |
|
|
108 | (3) |
|
|
111 | (28) |
|
|
111 | (1) |
|
5.2 Modeling density dependence: recruitment limitation |
|
|
112 | (3) |
|
5.3 Modeling density dependence: Idaho steppe |
|
|
115 | (6) |
|
|
121 | (7) |
|
5.4.1 Persistence or extinction? |
|
|
122 | (4) |
|
5.4.2 Local stability of equilibria |
|
|
126 | (1) |
|
5.4.3 Equilibrium perturbation analysis |
|
|
127 | (1) |
|
5.4.4 Density dependence and environmental stochasticity |
|
|
128 | (1) |
|
5.5 Case study 2C: ungulate competition |
|
|
128 | (8) |
|
|
136 | (1) |
|
5.7 Appendix: Mean field approximations for neighborhood competition |
|
|
136 | (3) |
|
6 General Deterministic IPM |
|
|
139 | (48) |
|
|
139 | (1) |
|
6.2 Case study 2D: ungulate age-size structure |
|
|
140 | (8) |
|
6.2.1 Structure of an age-size IPM |
|
|
141 | (1) |
|
6.2.2 Individual-based model and demographic analysis |
|
|
142 | (2) |
|
6.2.3 Implementing the model |
|
|
144 | (4) |
|
6.3 Specifying a general IPM |
|
|
148 | (2) |
|
|
150 | (5) |
|
|
150 | (1) |
|
6.4.2 Susceptible and Infected |
|
|
151 | (1) |
|
|
152 | (1) |
|
6.4.4 Individual quality and size |
|
|
152 | (2) |
|
6.4.5 Stage structure with variable stage durations |
|
|
154 | (1) |
|
6.5 Stable population growth |
|
|
155 | (5) |
|
6.5.1 Assumptions for stable population growth |
|
|
156 | (3) |
|
6.5.2 Alternate stable states |
|
|
159 | (1) |
|
|
159 | (1) |
|
6.6 Numerical implementation |
|
|
160 | (7) |
|
6.6.1 Computing eigenvalues and eigenvectors |
|
|
160 | (2) |
|
6.6.2 Implementing a size-quality model |
|
|
162 | (5) |
|
6.7 Case Study 2D: Age-size structured ungulate, further calculations |
|
|
167 | (4) |
|
6.7.1 Population growth rate |
|
|
167 | (2) |
|
6.7.2 Other demographic measures |
|
|
169 | (1) |
|
6.7.3 Consequences of age-structure |
|
|
170 | (1) |
|
6.8 Other ways to compute integrals |
|
|
171 | (9) |
|
6.9 Appendix: the details |
|
|
180 | (7) |
|
|
183 | (4) |
|
7 Environmental Stochasticity |
|
|
187 | (42) |
|
7.1 Why environmental stochasticity matters |
|
|
187 | (2) |
|
7.1.1 Kernel selection versus parameter selection |
|
|
188 | (1) |
|
7.2 Case Study 1C: Another monocarpic perennial |
|
|
189 | (6) |
|
|
191 | (2) |
|
7.2.2 Basic analyses by projection |
|
|
193 | (2) |
|
7.3 Modeling temporal variation |
|
|
195 | (6) |
|
7.3.1 Fixed versus random effects |
|
|
195 | (6) |
|
|
201 | (5) |
|
|
204 | (2) |
|
7.5 Sensitivity and elasticity analysis |
|
|
206 | (12) |
|
7.5.1 Kernel perturbations |
|
|
209 | (2) |
|
7.5.2 Function perturbations |
|
|
211 | (3) |
|
7.5.3 Parameter perturbations |
|
|
214 | (4) |
|
7.6 Life Table Response Experiment (LTRE) Analysis |
|
|
218 | (3) |
|
7.7 Events in the life cycle |
|
|
221 | (2) |
|
7.8 Appendix: the details |
|
|
223 | (6) |
|
|
227 | (2) |
|
|
229 | (26) |
|
8.1 Overview of spatial IPMs |
|
|
229 | (2) |
|
8.2 Building a dispersal kernel |
|
|
231 | (6) |
|
8.2.1 Descriptive movement modeling |
|
|
232 | (4) |
|
8.2.2 Mechanistic movement models |
|
|
236 | (1) |
|
8.3 Theory: bounded spatial domain |
|
|
237 | (2) |
|
8.4 Theory: unbounded spatial domain |
|
|
239 | (4) |
|
8.5 Some applications of purely spatial IPMs |
|
|
243 | (1) |
|
8.6 Combining space and demography: invasive species |
|
|
244 | (7) |
|
8.7 Invasion speed in fluctuating environments |
|
|
251 | (4) |
|
9 Evolutionary Demography |
|
|
255 | (28) |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
257 | (3) |
|
9.3.1 Approximating Evolutionary Dynamics |
|
|
259 | (1) |
|
|
260 | (5) |
|
9.4.1 Evolutionary Endpoints |
|
|
261 | (2) |
|
9.4.2 Finding ESSs using an optimization principle |
|
|
263 | (2) |
|
9.5 Evolution: Stochastic Environments |
|
|
265 | (7) |
|
9.6 Function-valued traits |
|
|
272 | (8) |
|
9.6.1 Solving the ESS conditions for function-valued strategies |
|
|
277 | (3) |
|
9.7 Prospective evolutionary models |
|
|
280 | (1) |
|
9.8 Appendix: Approximating evolutionary change |
|
|
281 | (2) |
|
10 Future Directions and Advanced Topics |
|
|
283 | (32) |
|
10.1 More flexible kernels |
|
|
283 | (8) |
|
10.1.1 Transforming variables |
|
|
284 | (1) |
|
10.1.2 Nonconstant variance |
|
|
284 | (2) |
|
10.1.3 Nonlinear growth: modeling the mean |
|
|
286 | (1) |
|
10.1.4 Nonlinear growth: parametric variance models |
|
|
287 | (1) |
|
10.1.5 Nonparametric models for growth variation |
|
|
288 | (3) |
|
10.2 High-dimensional kernels |
|
|
291 | (2) |
|
10.3 Demographic stochasticity |
|
|
293 | (11) |
|
10.3.1 Population growth rate |
|
|
297 | (4) |
|
|
301 | (3) |
|
10.4 IPM meets DEB: deterministic trait dynamics or constraints |
|
|
304 | (2) |
|
10.5 Different kinds of data |
|
|
306 | (6) |
|
10.5.1 Mark-recapture-recovery data |
|
|
306 | (4) |
|
|
310 | (2) |
|
|
312 | (1) |
|
10.7 Appendix: Covariance with demographic stochasticity |
|
|
312 | (3) |
References |
|
315 | (12) |
Index |
|
327 | |