Muutke küpsiste eelistusi

E-raamat: Data Engineering in Medical Imaging: First MICCAI Workshop, DEMI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

?Volume LNCS 14414 constitutes the refereed proceedings of the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023, which was held in Vancouver, Canada in October 2023.

The DEMI 2023 proceedings contain 11 high-quality papers of 9 to 15 pages pre-selected through a rigorous peer review process (with an average of three reviews per paper). All submissions were peer-reviewed through a double-blind process by at least three members of the scientific review committee, comprising 16 experts in the field of medical imaging. The accepted manuscripts cover various medical image analysis methods and applications.


Weakly Supervised Medical Image Segmentation through Dense Combinations
of Dense Pseudo-Labels.- Whole Slide Multiple Instance Learning for
Predicting Axillary Lymph Node Metastasis.- A Client-server Deep Federated
Learning for Cross-domain Surgical Image Segmentation.- Pre-training with
simulated ultrasound images for breast mass segmentation and
classification.- Efficient Large Scale Medical Image Dataset Preparation for
Machine Learning Applications.- A Self-supervised Approach for Detecting the
Edges of Haustral Folds in Colonoscopy Video.- Procedurally Generated
Colonoscopy and Laparoscopy Data For Improved Model Training
Performance.- Improving Medical Image Classification in Noisy Labels Using
Only Self-supervised Pretraining.- A Study on Using Transformer Encoding
Techniques to Optimize Data-driven Volume-to-Surface Registration for
Minimally Invasive Liver Interventions.- Vision Transformer-based
Self-Supervised Learning for Ulcerative Colitis Grading in
Colonoscopy.- Task-guided Domain Gap Reduction for Monocular Depth Prediction
in Endoscopy.