Preface |
|
xvii | |
Acknowledgements |
|
xxi | |
Introduction |
|
xxiii | |
Author |
|
xxix | |
1 Introduction to Data Fusion Process |
|
1 | (12) |
|
|
1 | (2) |
|
|
3 | (5) |
|
1.2.1 Joint Directors of Laboratories Model |
|
|
3 | (1) |
|
1.2.2 Modified Waterfall Fusion Model |
|
|
3 | (1) |
|
1.2.3 The Intelligence Cycle-Based Model |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
5 | (3) |
|
1.3 Sensor Data Fusion Configurations |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.4 Sensor Data Fusion Architectures |
|
|
9 | (2) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
2 Statistics, Probability Models and Reliability: Towards Probabilistic Data Fusion |
|
13 | (44) |
|
|
13 | (1) |
|
|
14 | (4) |
|
2.2.1 Mathematical Expectation |
|
|
15 | (1) |
|
2.2.2 Variance, Covariance and STD |
|
|
16 | (1) |
|
2.2.3 Correlations and Autocorrelation Function |
|
|
17 | (1) |
|
|
18 | (2) |
|
2.4 Probabilistic Methods for DF |
|
|
20 | (5) |
|
|
20 | (2) |
|
2.4.2 DF Based on Bayesian Rule |
|
|
22 | (2) |
|
2.4.3 Distributed DF Based on Bayesian Rule |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (6) |
|
|
26 | (1) |
|
2.5.1.1 Weighted Average Method |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
2.5.4 Markov Models for Reliability Evaluation |
|
|
28 | (2) |
|
2.5.5 Reliability in Least-Squares Estimation |
|
|
30 | (1) |
|
|
31 | (4) |
|
2.6.1 Entropy and Information |
|
|
31 | (2) |
|
|
33 | (1) |
|
2.6.3 Information Pooling Methods |
|
|
34 | (1) |
|
2.6.3.1 Linear Opinion Pool |
|
|
34 | (1) |
|
2.6.3.2 Independent Opinion Pool |
|
|
34 | (1) |
|
2.6.3.3 Independent Likelihood Pool |
|
|
34 | (1) |
|
2.7 Probability Concepts for Expert System and DF |
|
|
35 | (5) |
|
2.7.1 Probabilistic Rules and Evidence |
|
|
36 | (1) |
|
2.7.2 Propagation of Confidence Limits |
|
|
36 | (3) |
|
2.7.3 Combining-Fusion of Multiple Reports |
|
|
39 | (1) |
|
2.8 Probabilistic Methods for DF: Theoretical Examples |
|
|
40 | (12) |
|
2.8.1 Maximum Entropy Method |
|
|
40 | (1) |
|
2.8.2 Maximum Likelihood Method |
|
|
41 | (1) |
|
2.8.3 ML and Incomplete Data |
|
|
42 | (1) |
|
|
43 | (3) |
|
2.8.5 DF Aspects/Examples |
|
|
46 | (2) |
|
2.8.5.1 Sensors with No Noise |
|
|
46 | (1) |
|
2.8.5.2 Fusion of Homogeneous Sensor Data |
|
|
47 | (1) |
|
2.8.6 Some Realistic DF Problems |
|
|
48 | (4) |
|
2.9 Bayesian Formula and Sensor/DF: Illustrative Example |
|
|
52 | (3) |
|
|
55 | (1) |
|
|
56 | (1) |
3 Fuzzy Logic and Possibility Theory-Based Fusion |
|
57 | (92) |
|
|
57 | (3) |
|
|
60 | (9) |
|
3.2.1 MFs for Fuzzification |
|
|
61 | (1) |
|
|
62 | (1) |
|
3.2.3 Fuzzy Inference System |
|
|
63 | (2) |
|
3.2.3.1 Steps of Fuzzy Inference Process |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
3.2.7 Fuzzy Implication Functions |
|
|
68 | (1) |
|
3.3 Adaptive Neuro-Fuzzy Inference System |
|
|
69 | (3) |
|
|
72 | (13) |
|
3.4.1 Type 2 and Interval Type 2 Fuzzy Sets |
|
|
73 | (1) |
|
|
74 | (5) |
|
3.4.3 The Set Theoretic Operations for IT2FS |
|
|
79 | (1) |
|
3.4.4 Further Operations on IT2FS |
|
|
79 | (6) |
|
3.5 Fuzzy Intelligent Sensor Fusion |
|
|
85 | (1) |
|
3.6 FL-Based Procedure for Generating the Weights for a DF Rule |
|
|
86 | (2) |
|
3.7 FL-ANFIS for Parameter Estimation and Generation of DF Weights: Illustrative Examples |
|
|
88 | (6) |
|
3.7.1 ANIFS-Based Parameter Estimation |
|
|
88 | (2) |
|
3.7.1.1 Parameter Estimation from an Algebraic Model |
|
|
89 | (1) |
|
3.7.2 ANIFS for Deciphering a Linear DF Rule for Images |
|
|
90 | (4) |
|
3.7.2.1 Determination of DF Rule Using ANFIS and Random Image Data |
|
|
90 | (2) |
|
3.7.2.2 Determination of DF Rule Using ANFIS and Real-Blurred Images |
|
|
92 | (2) |
|
|
94 | (7) |
|
3.8.1 Possibility Distribution |
|
|
94 | (1) |
|
3.8.2 Possibility Set Functions |
|
|
94 | (2) |
|
3.8.3 Joint Possibility Distribution, Specificity and Non-Interactivity |
|
|
96 | (2) |
|
3.8.4 Possibility and Necessity of Fuzzy Events |
|
|
98 | (1) |
|
3.8.5 Conditional Possibility |
|
|
99 | (2) |
|
3.9 Fusion of Long-Wave IR and EOT Images Using Type 1 and Type 2 Fuzzy Logics: Illustrative Examples |
|
|
101 | (22) |
|
3.9.1 FL Systems: Takagi-Sugeno-Kang Inference Method |
|
|
101 | (6) |
|
3.9.2 IT2FS Operations and Inference |
|
|
107 | (3) |
|
|
110 | (2) |
|
3.9.3.1 Centre of Sets (CoS) |
|
|
110 | (1) |
|
3.9.3.2 Karnik Mendel Algorithm (KMA) |
|
|
111 | (1) |
|
|
112 | (1) |
|
3.9.4 Implementation of Image Fusion Using MATLAB FLS Toolbox |
|
|
112 | (2) |
|
3.9.5 Results and Discussion |
|
|
114 | (9) |
|
3.9.5.1 Qualitative Analysis |
|
|
115 | (4) |
|
3.9.5.2 Analytical Evaluation |
|
|
119 | (4) |
|
3.10 DF Using Dempster-Shafer and Possibility Theory: Illustrative Example |
|
|
123 | (14) |
|
3.10.1 Information Fusion for Close-Range Mine Detection |
|
|
127 | (2) |
|
3.10.1.1 Belief Function Fusion |
|
|
127 | (2) |
|
3.10.1.2 Fuzzy and Possibility Fusion |
|
|
129 | (1) |
|
3.10.2 Close-Range Mine Detection Measures |
|
|
129 | (4) |
|
|
129 | (2) |
|
|
131 | (1) |
|
|
131 | (2) |
|
3.10.3 Fusion Combination Evaluation |
|
|
133 | (1) |
|
3.10.4 Comparison and Decision Results |
|
|
134 | (3) |
|
Appendix 3A: Type 1-Triangular MF-MATLAB Code |
|
|
137 | (2) |
|
Appendix 3B: Type 2-Gaussian MF-MATLAB Code |
|
|
139 | (2) |
|
Appendix 3C: Fuzzy Inference Calculations - MATLAB Code |
|
|
141 | (4) |
|
|
145 | (1) |
|
|
146 | (3) |
4 Filtering, Target Tracking and Kinematic Data Fusion |
|
149 | (60) |
|
|
149 | (1) |
|
|
150 | (14) |
|
4.2.1 State and Sensor Models |
|
|
151 | (1) |
|
4.2.2 The Kalman Filter Algorithm |
|
|
152 | (4) |
|
4.2.2.1 Time Propagation/Time Update Algorithm |
|
|
152 | (1) |
|
4.2.2.2 Measurement/Data-Update Algorithm |
|
|
153 | (3) |
|
4.2.3 The Innovations: Kalman Filter Residuals |
|
|
156 | (1) |
|
4.2.4 Steady-State Filters |
|
|
157 | (1) |
|
4.2.5 Asynchronous, Delayed and A-Sequent Measurements |
|
|
158 | (2) |
|
4.2.6 The Extended Kalman Filter |
|
|
160 | (2) |
|
4.2.6.1 Time Propagation of States/Covariance Matrix |
|
|
161 | (1) |
|
4.2.6.2 Measurement Update |
|
|
162 | (1) |
|
4.2.7 Kalman Filter: A Natural Data-Level Fuser |
|
|
162 | (2) |
|
4.2.7.1 Fusion-Measurement Update Algorithm |
|
|
162 | (2) |
|
4.3 The Multi-Sensor Data Fusion and Kalman Filter |
|
|
164 | (3) |
|
|
164 | (1) |
|
4.3.2 Group-Sensor Method |
|
|
165 | (1) |
|
4.3.3 Sequential-Sensor Method |
|
|
166 | (1) |
|
4.3.4 Inverse-Covariance Form |
|
|
166 | (1) |
|
4.3.5 Track-to-Track Fusion |
|
|
167 | (1) |
|
4.4 Non-Linear Data Fusion Methods |
|
|
167 | (3) |
|
4.4.1 Likelihood Estimation Methods |
|
|
168 | (1) |
|
4.4.2 Derivative-Free Filtering and Fusion |
|
|
168 | (1) |
|
4.4.3 Other Non-Linear Tracking Filters |
|
|
169 | (1) |
|
4.5 Data Association in MS Systems |
|
|
170 | (6) |
|
4.5.1 Nearest-Neighbour Standard Filter |
|
|
172 | (1) |
|
4.5.2 Probabilistic Data Association Filter |
|
|
173 | (2) |
|
4.5.3 Multiple-Hypothesis Filter |
|
|
175 | (1) |
|
4.6 Information Filtering |
|
|
176 | (3) |
|
4.6.1 Square Root Information Filtering |
|
|
177 | (1) |
|
4.6.2 DF Based on Square Root Information Filtering |
|
|
178 | (1) |
|
4.7 HI Filtering-Based DF |
|
|
179 | (5) |
|
4.7.1 HI Posterior Filter |
|
|
180 | (1) |
|
4.7.2 Risk-Sensitive HI Filter |
|
|
181 | (1) |
|
4.7.3 Global H1 Filter for DF |
|
|
182 | (1) |
|
4.7.4 Hybrid H2 and HI Filter |
|
|
183 | (1) |
|
4.8 Optimal Filtering for Data Fusion with Missing Measurements |
|
|
184 | (11) |
|
4.8.1 Basic Filter for Missing Measurements: SVF |
|
|
186 | (1) |
|
4.8.2 Optimal Filter for Missing Measurements: Measurement Level Fusion |
|
|
187 | (2) |
|
4.8.3 Optimal Filter in Two Parts for SVF |
|
|
189 | (1) |
|
4.8.4 Optimal Filter in Two Parts for MLF |
|
|
189 | (1) |
|
4.8.5 Performance Evaluation of the Filters for Handling Missing Data: Illustrative Examples |
|
|
190 | (5) |
|
4.9 Factorisation Filtering and Sensor DF: Illustrative Example |
|
|
195 | (12) |
|
4.9.1 Kalman UD Factorisation Filter |
|
|
197 | (5) |
|
4.9.2 UD Factorisation Filter for Correlated Process Noise and Bias Parameters |
|
|
202 | (1) |
|
4.9.3 Sensor Fusion Scheme |
|
|
203 | (2) |
|
4.9.4 Performance Evaluation of UD and UDCB Filters for Tracking and Fusion |
|
|
205 | (2) |
|
|
207 | (1) |
|
|
207 | (1) |
|
|
208 | (1) |
5 Decentralised Data Fusion Systems |
|
209 | (26) |
|
|
209 | (1) |
|
5.2 Data Fusion Architectures |
|
|
210 | (3) |
|
5.2.1 Hierarchical Data Fusion Architectures |
|
|
210 | (2) |
|
5.2.2 Distributed DF Architectures |
|
|
212 | (1) |
|
5.2.3 Decentralised Data Fusion Architectures |
|
|
212 | (1) |
|
5.3 Decentralised Estimation and Fusion |
|
|
213 | (8) |
|
|
213 | (2) |
|
5.3.2 Information Filter and Bayesian Theorem |
|
|
215 | (1) |
|
5.3.3 Information Filter in Multi-Sensor Estimation |
|
|
215 | (1) |
|
5.3.4 Hierarchical Information Filter |
|
|
216 | (1) |
|
5.3.5 Decentralised Information Filter |
|
|
217 | (2) |
|
5.3.5.1 Square Root Information Filter and Fusion |
|
|
219 | (2) |
|
5.4 Decentralised Multi-Target Tracking |
|
|
221 | (1) |
|
5.4.1 Decentralised Data Association |
|
|
221 | (1) |
|
5.4.2 Decentralised Identification and Bayesian Theorem |
|
|
222 | (1) |
|
5.5 Millman's Formulae in Sensor Data Fusion |
|
|
222 | (7) |
|
5.5.1 Generalised Millman's Formula |
|
|
223 | (2) |
|
5.5.2 Millman's Fusion Formulae in Filtering Algorithms |
|
|
225 | (1) |
|
5.5.3 Millman's Fusion Formulae in Smoothing Algorithms |
|
|
226 | (1) |
|
5.5.4 Generalised Millman's Formula in State Estimation |
|
|
226 | (11) |
|
5.5.4.1 Optimal Centralised Fusion |
|
|
226 | (1) |
|
5.5.4.2 Multi-sensory Fusion |
|
|
227 | (1) |
|
5.5.4.3 Hierarchical Data Fusion |
|
|
228 | (1) |
|
5.6 SRIF for Data Fusion in Decentralised Network with Four Sensor Nodes: Illustrative Example |
|
|
229 | (4) |
|
|
233 | (1) |
|
|
234 | (1) |
6 Component Analysis and Data Fusion |
|
235 | (44) |
|
|
235 | (2) |
|
6.2 Independent Component Analysis |
|
|
237 | (8) |
|
|
239 | (1) |
|
|
240 | (1) |
|
6.2.3 Determination of NG Property |
|
|
240 | (2) |
|
|
241 | (1) |
|
|
241 | (1) |
|
6.2.4 Determination of ICs Based on Information Theory |
|
|
242 | (1) |
|
6.2.5 Maximum Likelihood Estimation |
|
|
243 | (1) |
|
6.2.6 Demonstration of FastICA Code: Illustrative Example |
|
|
244 | (1) |
|
6.3 An Approach to Image Fusion Using ICA Bases |
|
|
245 | (10) |
|
6.3.1 Fusion Preliminaries |
|
|
246 | (1) |
|
6.3.2 Major Fusion Strategies |
|
|
247 | (1) |
|
6.3.2.1 Pixel-Based Fusion |
|
|
247 | (1) |
|
6.3.2.2 Region-Based Fusion |
|
|
248 | (1) |
|
|
248 | (3) |
|
|
248 | (1) |
|
|
249 | (1) |
|
6.3.3.3 Topographic ICA: TICA Bases |
|
|
250 | (1) |
|
6.3.4 Training and Properties of ICA Bases |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
252 | (1) |
|
6.3.5 Image Fusion Using ICA Bases |
|
|
252 | (1) |
|
6.3.6 Pixel- and Region-Based Fusion Rules Using ICA Bases |
|
|
253 | (2) |
|
6.3.6.1 WC Pixel-Based Method |
|
|
253 | (1) |
|
6.3.6.2 Region-Based Image Fusion Using ICA Bases |
|
|
253 | (1) |
|
6.3.6.3 Performance Evaluation Metrics |
|
|
254 | (1) |
|
6.4 Principal Component Analysis |
|
|
255 | (3) |
|
6.4.1 Image Fusion Using PCA Coefficients |
|
|
257 | (1) |
|
6.4.2 Image Fusion of Blurred Aircraft Images Using PCA Coefficients: Illustrative Example |
|
|
257 | (1) |
|
6.5 Discrete-Cosine Transform |
|
|
258 | (3) |
|
6.5.1 Multi-Resolution DCT |
|
|
259 | (1) |
|
6.5.2 Multi-Sensor Image Fusion |
|
|
260 | (1) |
|
|
261 | (6) |
|
6.6.1 Image Analysis for Image Fusion by WT |
|
|
263 | (1) |
|
6.6.2 Image Fusion of Blurred Aircraft Images Using WT Coefficients: Illustrative Example |
|
|
264 | (3) |
|
6.7 An Approach to Image Fusion Using ICA and Wavelets |
|
|
267 | (1) |
|
6.8 Non-Linear ICA and PCA |
|
|
268 | (1) |
|
|
268 | (1) |
|
|
268 | (1) |
|
6.9 Curvelet Transform for Image Fusion |
|
|
269 | (2) |
|
6.10 Image Fusion Using MR Singular Value Decomposition |
|
|
271 | (5) |
|
6.10.1 Multi-Resolution SVD |
|
|
271 | (2) |
|
6.10.2 Image Fusion Using MRSVD: Illustrative Example |
|
|
273 | (3) |
|
|
276 | (1) |
|
|
277 | (2) |
7 Image Algebra and Image Fusion |
|
279 | (80) |
|
|
|
279 | (3) |
|
|
279 | (1) |
|
7.1.2 Needs of Image Fusion |
|
|
280 | (2) |
|
|
282 | (12) |
|
7.2.1 Point and Value Sets |
|
|
283 | (2) |
|
7.2.2 Images and Templates |
|
|
285 | (4) |
|
7.2.3 Recursive Templates |
|
|
289 | (1) |
|
7.2.4 Neighbourhoods and the p-Product: Illustrative Examples |
|
|
290 | (4) |
|
7.3 Pixels and Features of an Image |
|
|
294 | (2) |
|
|
296 | (1) |
|
7.5 Red, Green and Blue, Grey Images and Histograms |
|
|
297 | (1) |
|
|
298 | (3) |
|
|
299 | (1) |
|
7.6.2 Edge-Based Segmentation |
|
|
300 | (1) |
|
7.6.3 Region-Based Segmentation |
|
|
300 | (1) |
|
7.7 Noise Processes in an Observed/Acquired Image |
|
|
301 | (4) |
|
7.7.1 Salt and Pepper Noise |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
304 | (1) |
|
7.7.4 Quantisation and Uniform Noise |
|
|
304 | (1) |
|
7.7.5 Photon Counting Noise |
|
|
304 | (1) |
|
7.7.6 Photographic Grain Noise |
|
|
305 | (1) |
|
|
305 | (1) |
|
7.8 Image Feature Extraction Methods |
|
|
305 | (8) |
|
7.9 Image Transformation and Filtering Approaches |
|
|
313 | (9) |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
315 | (2) |
|
|
317 | (3) |
|
7.9.5 Multi-Scale Image Decomposition |
|
|
320 | (2) |
|
7.10 Image Fusion Mathematics |
|
|
322 | (10) |
|
7.10.1 Pixel-Level Fusion |
|
|
322 | (6) |
|
7.10.2 Feature Level Fusion |
|
|
328 | (2) |
|
7.10.3 Region-Based Image Fusion |
|
|
330 | (2) |
|
7.11 Image Fusion Algorithms |
|
|
332 | (8) |
|
7.12 Performance Evaluation |
|
|
340 | (7) |
|
7.13 Multimodal Biometric Systems and Fusion: Illustrative Examples |
|
|
347 | (6) |
|
7.13.1 Multimodal Biometric System Based on Feature Vector Fusion |
|
|
347 | (3) |
|
7.13.2 Character Recognition System Based on Score Fusion |
|
|
350 | (3) |
|
|
353 | (2) |
|
|
355 | (4) |
8 Decision Theory and Fusion |
|
359 | (52) |
|
|
359 | (4) |
|
8.2 Loss and Utility Functions |
|
|
363 | (1) |
|
|
364 | (1) |
|
8.4 Decision Making with Multiple Information Sources |
|
|
365 | (2) |
|
|
365 | (1) |
|
|
366 | (1) |
|
|
367 | (1) |
|
8.5 Fuzzy Modelling Approach for Decision Analysis/Fusion |
|
|
367 | (2) |
|
8.6 Fuzzy-Evolutive Integral Approach |
|
|
369 | (1) |
|
8.7 Decision Making Based on Voting |
|
|
370 | (1) |
|
8.7.1 A General Framework for Voting |
|
|
371 | (1) |
|
8.8 DeF Using FL for Aviation Scenarios |
|
|
371 | (6) |
|
8.8.1 Decision Level Fusion, FL and FIS |
|
|
372 | (1) |
|
8.8.2 Performance Evaluation: Illustrative Examples |
|
|
373 | (4) |
|
8.8.2.1 DeF 1: Formation Flight |
|
|
373 | (1) |
|
|
374 | (3) |
|
|
377 | (9) |
|
|
378 | (1) |
|
8.9.2 Classifier Fusion and Selection |
|
|
379 | (7) |
|
8.9.2.1 Combining Class Labels: Crisp Outputs |
|
|
380 | (2) |
|
|
382 | (2) |
|
8.9.2.3 Combining Soft Outputs |
|
|
384 | (2) |
|
8.9.3 Selection of the Classifiers |
|
|
386 | (1) |
|
8.10 SA with FL and DeF for Aviation Scenarios: Illustrative Examples |
|
|
386 | (23) |
|
8.10.1 SA and Decision-Level Fusion |
|
|
387 | (1) |
|
8.10.2 A MATLAB/GUI Tool for Evaluation of FIFs |
|
|
387 | (1) |
|
|
388 | (1) |
|
8.10.4 Performance of FL-Based Decision Systems |
|
|
388 | (20) |
|
8.10.4.1 Scenario I: Formation Flight |
|
|
389 | (5) |
|
8.10.4.2 Scenario II: Attack |
|
|
394 | (4) |
|
8.10.4.3 Scenario III: Threat Assessment |
|
|
398 | (3) |
|
8.10.4.4 Study of Effect of Noise on FL-Based Decision Fusion Systems |
|
|
401 | (7) |
|
8.10.5 Discussion of the Results |
|
|
408 | (1) |
|
|
409 | (1) |
|
|
409 | (2) |
9 Wireless Sensor Networks and Multimodal Data Fusion |
|
411 | (26) |
|
|
411 | (1) |
|
9.2 Communication Networks and Their Topologies in WSNs |
|
|
412 | (1) |
|
|
413 | (1) |
|
|
413 | (1) |
|
9.2.3 Hybrid Star: Mesh Network |
|
|
413 | (1) |
|
9.3 Sensor/Wireless Sensor Networks |
|
|
413 | (2) |
|
|
414 | (1) |
|
|
414 | (1) |
|
9.4 Wireless Sensor Networks and Architectures |
|
|
415 | (1) |
|
9.4.1 Distributed Kalman Filtering |
|
|
416 | (1) |
|
9.5 Sensor Data Fusion in WSN |
|
|
416 | (4) |
|
|
417 | (1) |
|
|
417 | (1) |
|
9.5.3 Cluster-Based Data Fusion |
|
|
417 | (1) |
|
9.5.4 Synchronisation among Nodes |
|
|
418 | (1) |
|
9.5.5 Resistance against Attacks |
|
|
419 | (1) |
|
9.6 Multimodality Sensor Fusion |
|
|
420 | (6) |
|
9.6.1 Multimodal Sensor Data Management |
|
|
421 | (1) |
|
9.6.2 Multimodal Sensory Data Interpretation |
|
|
421 | (1) |
|
9.6.3 Human-Sensor Data Interaction |
|
|
422 | (1) |
|
9.6.4 Real-World System Development and Deployment |
|
|
422 | (1) |
|
9.6.5 Multimodal Fusion Methodology |
|
|
422 | (4) |
|
9.6.5.1 Data Fusion Levels |
|
|
423 | (1) |
|
9.6.5.2 Techniques for Multimodal Fusion |
|
|
423 | (3) |
|
9.7 Decision Fusion Rules in WSN |
|
|
426 | (2) |
|
|
426 | (1) |
|
|
427 | (1) |
|
9.8 Data Aggregation in WSN |
|
|
428 | (1) |
|
9.9 Hybrid Data and Decision Fusion in WSN |
|
|
429 | (3) |
|
9.9.1 Identification of Parameters of the Partial Differential Equation |
|
|
430 | (1) |
|
9.9.2 Hybrid Data/Decision Fusion Approach: Illustrative Example |
|
|
430 | (2) |
|
9.10 Optimal Decision Fusion in WSN |
|
|
432 | (2) |
|
9.10.1 Complementary Optimal Decision Fusion |
|
|
432 | (2) |
|
|
434 | (1) |
|
|
435 | (2) |
10 Soft Computing Approaches to Data Fusion |
|
437 | (58) |
|
|
437 | (2) |
|
10.2 Artificial Neural Networks |
|
|
439 | (5) |
|
10.2.1 Feed-Forward Neural Networks |
|
|
440 | (4) |
|
10.2.1.1 Back Propagation Algorithm for Training |
|
|
440 | (2) |
|
10.2.1.2 Recursive Least Squares Filtering Algorithms |
|
|
442 | (2) |
|
10.3 Radial Basis Function Neural Network |
|
|
444 | (3) |
|
|
445 | (1) |
|
|
446 | (1) |
|
10.3.3 RBF Training Algorithm |
|
|
447 | (1) |
|
10.4 Recurrent Neural Networks |
|
|
447 | (3) |
|
10.4.1 RNN-S/Hopfield Neural Network |
|
|
448 | (1) |
|
|
449 | (1) |
|
10.4.3 RNN-Weighted States |
|
|
449 | (1) |
|
|
450 | (1) |
|
10.5 FL and Systems as SC Paradigm |
|
|
450 | (6) |
|
|
450 | (1) |
|
10.5.2 Fuzzy Sets and Uncertainty |
|
|
451 | (1) |
|
|
452 | (1) |
|
10.5.4 Linguistic Variables |
|
|
453 | (1) |
|
10.5.5 Fuzzy Logic and Functions |
|
|
453 | (1) |
|
|
453 | (2) |
|
10.5.7 FIS/FLC Developmental Process |
|
|
455 | (1) |
|
10.6 FL in Kalman Filter for Image-Centroid Tracking: A Type of Fusion |
|
|
456 | (10) |
|
10.6.1 Segmentation/Centroid Detection Method |
|
|
457 | (1) |
|
|
458 | (1) |
|
10.6.3 Realisation of Fuzzy Error Mapping Using FIS |
|
|
459 | (1) |
|
10.6.4 Simulation of Synthetic Image Data |
|
|
459 | (2) |
|
|
460 | (1) |
|
10.6.4.2 Measurement Model |
|
|
460 | (1) |
|
10.6.5 Gating and NN Data Association |
|
|
461 | (1) |
|
10.6.6 Simulation of FL-CDTA: Illustrative Example |
|
|
462 | (4) |
|
|
466 | (3) |
|
|
466 | (1) |
|
10.7.2 Components and Operations in GA |
|
|
466 | (2) |
|
|
466 | (1) |
|
10.7.2.2 Population and Fitness |
|
|
467 | (1) |
|
10.7.2.3 Initialisation and Reproduction |
|
|
467 | (1) |
|
|
467 | (1) |
|
|
467 | (1) |
|
|
467 | (1) |
|
10.7.2.7 Survival of the Fittest |
|
|
468 | (1) |
|
10.7.2.8 Cost Function, Decision Variables and Search Space |
|
|
468 | (1) |
|
10.7.3 Steps in Genetic Algorithm |
|
|
468 | (1) |
|
10.7.4 Other Aspects of GAs |
|
|
469 | (1) |
|
10.8 SDF Approaches Using SC Methods: Illustrative Examples |
|
|
469 | (11) |
|
10.8.1 DF for Parameter Estimation Using RNN |
|
|
470 | (4) |
|
10.8.1.1 DF: Parameter Vector Fusion |
|
|
473 | (1) |
|
10.8.2 DF for Parameter Estimation Using GA |
|
|
474 | (2) |
|
10.8.3 Multiple Neural NWs Using DF Method for Non-Linear Process Modelling |
|
|
476 | (3) |
|
10.8.3.1 Aggregation of ANNs Using DF Method: Illustrative Example |
|
|
476 | (3) |
|
10.8.4 DF Using Neural NWs: Illustrative Example |
|
|
479 | (1) |
|
|
480 | (5) |
|
10.9.1 Taxonomy of the Machine Learning |
|
|
481 | (1) |
|
10.9.2 Machine Learning Diversity Metric for DF |
|
|
482 | (2) |
|
10.9.2.1 Preliminary Results Using E-Measure: Illustrative Example |
|
|
482 | (2) |
|
10.9.3 Machine Learning Algorithm and DF for Estimating Energy Expenditure |
|
|
484 | (1) |
|
10.10 Neural-Fuzzy-Genetic Algorithm Fusion |
|
|
485 | (5) |
|
10.10.1 ANN-Based Approach |
|
|
485 | (2) |
|
10.10.2 Fuzzy Logic-Based Approach |
|
|
487 | (2) |
|
10.10.3 GA-Based Approach |
|
|
489 | (1) |
|
10.10.4 GA-FL Hybrid Approach |
|
|
489 | (1) |
|
10.11 Image Analysis Using ANFIS: Illustrative Example |
|
|
490 | (2) |
|
|
492 | (1) |
|
|
492 | (1) |
|
|
493 | (2) |
Appendix A: Some Algorithms and/or Their Derivations |
|
495 | (12) |
Appendix B: Other Methods of DF and Fusion Performance Evaluation Metrics |
|
507 | (12) |
Appendix C: Automatic Data Fusion |
|
519 | (4) |
Appendix D: Notes and Information on Data Fusion Software Tools |
|
523 | (10) |
Appendix E: Definitions of Sensor DF in Literature |
|
533 | (6) |
Appendix F: Some Current Research Topics in DF |
|
539 | (2) |
Index |
|
541 | |