Muutke küpsiste eelistusi

E-raamat: Data Mining for Biomedical Applications: PAKDD 2006 Workshop, BioDM 2006, Singapore, April 9, 2006, Proceedings

Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 3916
  • Ilmumisaeg: 28-Feb-2006
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540331056
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Computer Science 3916
  • Ilmumisaeg: 28-Feb-2006
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540331056
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the International Workshop on Data Mining for Biomedical Applications, BioDM 2006, held in Singapore in conjunction with the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006). The 14 revised full papers presented together with one keynote talk were carefully reviewed and selected from 35 submissions. The papers are organized in topical sections

This book constitutes the refereed proceedings of the International Workshop on Data Mining for Biomedical Applications, BioDM 2006, held in Singapore in conjunction with the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006).The 14 revised full papers presented together with 1 keynote talks were carefully reviewed and selected from 35 submissions. The papers are organized in topical sections on protein-protein interactions, database and search, bio data clustering, and in-silico diagnosis.
Keynote Talk
Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions
Hon Nian Chua, Wing-Kin Sung, Limsoon Wong
1(1)
Database and Search
A Database Search Algorithm for Identification of Peptides with Multiple Charges Using Tandem Mass Spectrometry
Kong Ning, Ket Fah Chong, Hon Wai Leong
2(12)
Filtering Bio-sequence Based on Sequence Descriptor
Te-Wen Hsieh, Huang-Cheng Kuo, Jen-Peng Huang
14(10)
Automatic Extraction of Genomic Glossary Triggered by Query
Jiao Li, Xiaoyan Zhu
24(11)
Frequent Subsequence-Based Protein Localization
Osmar R. Zaiane, Yang Wang, Randy Goebel, Gregory Taylor
35(13)
Bio Data Clustering
gTRICLUSTER: A More General and Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data
Haoliang Jiang, Shuigeng Zhou, Jihong Guan, Ying Zheng
48(12)
Automatic Orthologous-Protein-Clustering from Multiple Complete-Genomes by the Best Reciprocal BLAST Hits
Sunshin Kim, Kwang Su Jung, Keun Ho Ryu
60(11)
A Novel Clustering Method for Analysis of Gene Microarray Expression Data
Fei Luo, Juan Liu
71(11)
Heterogeneous Clustering Ensemble Method for Combining Different Cluster Results
Hye-Sung Yoon, Sun-Young Ahn, Sang-Ho Lee, Sung-Bum Cho, Ju Han Kim
82(11)
In-silico Diagnosis
Rule Learning for Disease-Specific Biomarker Discovery from Clinical Proteomic Mass Spectra
Vanathi Gopalakrishnan, Philip Ganchev, Srikanth Ranganathan, Robert Bowser
93(13)
Machine Learning Techniques and Chi-Square Feature Selection for Cancer Classification Using SAGE Gene Expression Profiles
Xin Jin, Anbang Xu, Rongfang Bie, Ping Guo
106(10)
Generation of Comprehensible Hypotheses from Gene Expression Data
Yuan Jiang, Ming Li, Zhi-Hua Zhou
116(8)
Classification of Brain Glioma by Using SVMs Bagging with Feature Selection
Guo-Zheng Li, Tian-Yu Liu, Victor S. Cheng
124(7)
Missing Value Imputation Framework for Microarray Significant Gene Selection and Class Prediction
Muhammad Shoaib B. Sehgal, Iqbal Gondal, Laurence Dooley
131(12)
Informative MicroRNA Expression Patterns for Cancer Classification
Yun Zheng, Chee Keong Kwoh
143(12)
Author Index 155