Muutke küpsiste eelistusi

E-raamat: Data Mining: Foundations and Practice

Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The IEEE ICDM 2004 workshop on the Foundation of Data Mining and the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented Data and Web Mining focused on topics ranging from the foundations of data mining to new data mining paradigms. The workshops brought together both data mining researchers and practitioners to discuss these two topics while seeking solutions to long standing data mining problems and stimul- ing new data mining research directions. We feel that the papers presented at these workshops may encourage the study of data mining as a scienti c ?eld and spark new communications and collaborations between researchers and practitioners. Toexpressthevisionsforgedintheworkshopstoawiderangeofdatam- ing researchers and practitioners and foster active participation in the study of foundations of data mining, we edited this volume by involving extended and updated versions of selected papers presented at those workshops as well as some other relevant contributions. The content of this book includes st- ies of foundations of data mining from theoretical, practical, algorithmical, and managerial perspectives. The following is a brief summary of the papers contained in this book.

This book contains valuable studies in data mining from both foundational and practical perspectives. It covers a broad range of subjects, from a conceptual framework of data mining to the role of sample size, as well as many different fields of data mining.

Compact Representations of Sequential Classification Rules.- An
Algorithm for Mining Weighted Dense Maximal 1-Complete Regions.- Mining
Linguistic Trends from Time Series.- Latent Semantic Space for Web
Clustering.- A Logical Framework for Template Creation and Information
Extraction.- A Bipolar Interpretation of Fuzzy Decision Trees.- A Probability
Theory Perspective on the Zadeh Fuzzy System.- Three Approaches to Missing
Attribute Values: A Rough Set Perspective.- MLEM2 Rule Induction Algorithms:
With and Without Merging Intervals.- Towards a Methodology for Data Mining
Project Development: The Importance of Abstraction.- Fining Active Membership
Functions in Fuzzy Data Mining.- A Compressed Vertical Binary Algorithm for
Mining Frequent Patterns.- Naïve Rules Do Not Consider Underlying Causality.-
Inexact Multiple-Grained Causal Complexes.- Does Relevance Matter to Data
Mining Research?.- E-Action Rules.- Mining E-Action Rules, System DEAR.-
Definability of Association Rules and Tables of Critical Frequencies.-
Classes of Association Rules: An Overview.- Knowledge Extraction from
Microarray Datasets Using Combined Multiple Models to Predict Leukemia
Types.- On the Complexity of the Privacy Problem in Databases.- Ensembles of
Least Squares Classifiers with Randomized Kernels.- On Pseudo-Statistical
Independence in a Contingency Table.- Role of Sample Size and Determinants in
Granularity of Contingency Matrix.- Generating Concept Hierarchies from User
Queries.- Mining Efficiently Significant Classification Association Rules.-
Data Preprocessing and Data Mining as Generalization.- Capturing Concepts and
Detecting Concept-Drift from Potential Unbounded, Ever-Evolving and
High-Dimensional Data Streams.- A Conceptual Framework of Data Mining.- How
to Prevent Private Datafrom being Disclosed to a Malicious Attacker.-
Privacy-Preserving Naive Bayesian Classification over Horizontally
Partitioned Data.- Using Association Rules for Classification from Databases
Having Class Label Ambiguities: A Belief Theoretic Method.