Preface |
|
xvii | |
|
1 Introduction to Data Mining |
|
|
1 | (20) |
|
|
|
|
|
|
1 | (1) |
|
|
1 | (1) |
|
1.2 Knowledge Discovery in Database (KDD) |
|
|
2 | (4) |
|
1.2.1 Importance of Data Mining |
|
|
3 | (1) |
|
1.2.2 Applications of Data Mining |
|
|
3 | (1) |
|
|
4 | (2) |
|
1.3 Issues in Data Mining |
|
|
6 | (1) |
|
1.4 Data Mining Algorithms |
|
|
7 | (2) |
|
|
9 | (1) |
|
1.6 Data Mining Techniques |
|
|
10 | (1) |
|
|
11 | (10) |
|
1.7.1 Python for Data Mining |
|
|
12 | (1) |
|
|
13 | (4) |
|
|
17 | (1) |
|
|
18 | (3) |
|
2 Classification and Mining Behavior of Data |
|
|
21 | (36) |
|
|
|
|
|
22 | (1) |
|
2.2 Main Characteristics of Mining Behavioral Data |
|
|
23 | (21) |
|
2.2.1 Mining Dynamic/Streaming Data |
|
|
23 | (1) |
|
2.2.2 Mining Graph & Network Data |
|
|
24 | (1) |
|
2.2.3 Mining Heterogeneous/Multi-Source Information |
|
|
25 | (1) |
|
2.2.3.1 Multi-Source and Multidimensional Information |
|
|
26 | (1) |
|
2.2.3.2 Multi-Relational Data |
|
|
26 | (1) |
|
2.2.3.3 Background and Connected Data |
|
|
27 | (1) |
|
2.2.3.4 Complex Data, Sequences, and Events |
|
|
27 | (1) |
|
2.2.3.5 Data Protection and Morals |
|
|
27 | (1) |
|
2.2.4 Mining High Dimensional Data |
|
|
28 | (1) |
|
2.2.5 Mining Imbalanced Data |
|
|
29 | (1) |
|
2.2.5.1 The Class Imbalance Issue |
|
|
29 | (1) |
|
2.2.6 Mining Multimedia Data |
|
|
30 | (1) |
|
2.2.6.1 Common Applications Multimedia Data Mining |
|
|
31 | (1) |
|
2.2.6.2 Multimedia Data Mining Utilizations |
|
|
31 | (1) |
|
2.2.6.3 Multimedia Database Management |
|
|
32 | (2) |
|
2.2.7 Mining Scientific Data |
|
|
34 | (1) |
|
2.2.8 Mining Sequential Data |
|
|
35 | (1) |
|
2.2.9 Mining Social Networks |
|
|
36 | (3) |
|
2.2.9.1 Social-Media Data Mining Reasons |
|
|
39 | (1) |
|
2.2.10 Mining Spatial and Temporal Data |
|
|
40 | (1) |
|
2.2.10.1 Utilizations of Spatial and Temporal Data Mining |
|
|
41 | (3) |
|
|
44 | (4) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (7) |
|
|
51 | (6) |
|
3 A Comparative Overview of Hybrid Recommender Systems: Review, Challenges, and Prospects |
|
|
57 | (42) |
|
|
|
|
58 | (2) |
|
3.2 Related Work on Different Recommender System |
|
|
60 | (39) |
|
|
65 | (1) |
|
3.2.2 Research Questions and Architecture of This Paper |
|
|
66 | (2) |
|
|
68 | (1) |
|
3.2.3.1 The Architecture of Hybrid Approach |
|
|
69 | (9) |
|
|
78 | (1) |
|
3.2.4.1 Evaluation Measures |
|
|
78 | (3) |
|
3.2.5 Materials and Methods |
|
|
81 | (4) |
|
3.2.6 Comparative Analysis With Traditional Recommender System |
|
|
85 | (1) |
|
3.2.7 Practical Implications |
|
|
85 | (9) |
|
3.2.8 Conclusion & Future Work |
|
|
94 | (1) |
|
|
94 | (5) |
|
4 Stream Mining: Introduction, Tools & Techniques and Applications |
|
|
99 | (26) |
|
|
|
100 | (1) |
|
4.2 Data Reduction: Sampling and Sketching |
|
|
101 | (2) |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
103 | (2) |
|
4.4 Stream Mining Operations |
|
|
105 | (4) |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
107 | (1) |
|
4.4.4 Frequent Itemsets Mining |
|
|
108 | (1) |
|
|
109 | (11) |
|
4.5.1 Implementation in Java |
|
|
110 | (6) |
|
4.5.2 Implementation in Python |
|
|
116 | (2) |
|
4.5.3 Implementation in R |
|
|
118 | (2) |
|
|
120 | (2) |
|
4.6.1 Stock Prediction in Share Market |
|
|
120 | (1) |
|
4.6.2 Weather Forecasting System |
|
|
121 | (1) |
|
4.6.3 Finding Trending News and Events |
|
|
121 | (1) |
|
4.6.4 Analyzing User Behavior in Electronic Commerce Site (Click Stream) |
|
|
121 | (1) |
|
4.6.5 Pollution Control Systems |
|
|
122 | (1) |
|
|
122 | (3) |
|
|
122 | (3) |
|
5 Data Mining Tools and Techniques: Clustering Analysis |
|
|
125 | (26) |
|
|
|
|
Priya BhatnagarandHiral Raja |
|
|
|
126 | (3) |
|
|
129 | (2) |
|
|
129 | (1) |
|
|
129 | (1) |
|
5.2.3 Classification of Data |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
130 | (1) |
|
5.3 Data Mining Algorithms and Methodologies |
|
|
131 | (5) |
|
5.3.1 Data Classification Algorithm |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
|
132 | (1) |
|
5.3.4.1 Data Clustering Algorithm |
|
|
133 | (1) |
|
5.3.5 In-Depth Study of Gathering Techniques |
|
|
134 | (1) |
|
5.3.6 Data Partitioning Method |
|
|
134 | (1) |
|
5.3.7 Hierarchical Method |
|
|
134 | (2) |
|
5.3.8 Framework-Based Method |
|
|
136 | (1) |
|
|
136 | (1) |
|
5.3.10 Thickness-Based Method |
|
|
136 | (1) |
|
5.4 Clustering the Nearest Neighbor |
|
|
136 | (2) |
|
|
137 | (1) |
|
|
137 | (1) |
|
5.5 Data Mining Applications |
|
|
138 | (2) |
|
5.6 Materials and Strategies for Document Clustering |
|
|
140 | (3) |
|
5.6.1 Features Generation |
|
|
142 | (1) |
|
5.7 Discussion and Results |
|
|
143 | (8) |
|
|
146 | (3) |
|
|
149 | (1) |
|
|
149 | (2) |
|
6 Data Mining Implementation Process |
|
|
151 | (24) |
|
|
|
|
|
151 | (1) |
|
6.2 Data Mining Historical Trends |
|
|
152 | (1) |
|
6.3 Processes of Data Analysis |
|
|
153 | (22) |
|
|
153 | (1) |
|
|
153 | (1) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (1) |
|
6.3.4.2 Design Evaluation |
|
|
154 | (1) |
|
6.3.4.3 Data Illustration |
|
|
154 | (1) |
|
6.3.4.4 Implementation of Data Mining in the Cross-Industry Standard Process |
|
|
154 | (1) |
|
6.3.5 Business Understanding |
|
|
155 | (1) |
|
|
156 | (2) |
|
|
158 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
6.3.11 Contemporary Developments |
|
|
162 | (1) |
|
6.3.12 An Assortment of Data Mining |
|
|
162 | (1) |
|
6.3.12.1 Using Computational & Connectivity Tools |
|
|
163 | (1) |
|
|
163 | (1) |
|
6.3.12.3 Comparative Statement |
|
|
163 | (1) |
|
6.3.13 Advantages of Data Mining |
|
|
163 | (2) |
|
6.3.14 Drawbacks of Data Mining |
|
|
165 | (1) |
|
6.3.15 Data Mining Applications |
|
|
165 | (2) |
|
|
167 | (2) |
|
|
169 | (2) |
|
6.3.18 Conclusion and Future Scope |
|
|
171 | (1) |
|
|
172 | (3) |
|
7 Predictive Analytics in IT Service Management (ITSM) |
|
|
175 | (20) |
|
|
|
|
176 | (2) |
|
7.2 Analytics: An Overview |
|
|
178 | (3) |
|
7.2.1 Predictive Analytics |
|
|
180 | (1) |
|
7.3 Significance of Predictive Analytics in ITSM |
|
|
181 | (5) |
|
7.4 Ticket Analytics: A Case Study |
|
|
186 | (5) |
|
|
188 | (1) |
|
7.4.2 Predictive Modeling |
|
|
188 | (1) |
|
7.4.3 Random Forest Model |
|
|
189 | (2) |
|
7.4.4 Performance of the Predictive Model |
|
|
191 | (1) |
|
|
191 | (4) |
|
|
192 | (3) |
|
8 Modified Cross-Sell Model for Telecom Service Providers Using Data Mining Techniques |
|
|
195 | (14) |
|
|
|
|
S. Pallaviand Omprakash Dewangan |
|
|
|
196 | (2) |
|
|
198 | (2) |
|
8.3 Methodology and Implementation |
|
|
200 | (3) |
|
8.3.1 Selection of the Independent Variables |
|
|
200 | (3) |
|
|
203 | (1) |
|
8.4.1 Interpreting the Results of Logistic Regression Model |
|
|
203 | (1) |
|
|
204 | (5) |
|
|
205 | (4) |
|
9 Inductive Learning Including Decision Tree and Rule Induction Learning |
|
|
209 | (26) |
|
|
|
|
|
210 | (2) |
|
9.2 The Inductive Learning Algorithm (ILA) |
|
|
212 | (1) |
|
|
213 | (1) |
|
9.4 Divide & Conquer Algorithm |
|
|
214 | (1) |
|
|
214 | (1) |
|
9.5 Decision Tree Algorithms |
|
|
215 | (16) |
|
|
215 | (2) |
|
9.5.2 Separate and Conquer Algorithm |
|
|
217 | (9) |
|
|
226 | (1) |
|
9.5.4 Inductive Learning Applications |
|
|
226 | (1) |
|
|
226 | (1) |
|
9.5.4.2 Making Credit Decisions |
|
|
227 | (1) |
|
9.5.5 Multidimensional Databases and OLAP |
|
|
228 | (1) |
|
|
228 | (1) |
|
9.5.7 Fuzzy Choice Tree Development From a Multidimensional Database |
|
|
229 | (1) |
|
9.5.8 Execution and Results |
|
|
230 | (1) |
|
9.6 Conclusion and Future Work |
|
|
231 | (4) |
|
|
232 | (3) |
|
10 Data Mining for Cyber-Physical Systems |
|
|
235 | (46) |
|
|
|
|
|
|
236 | (4) |
|
10.1.1 Models of Cyber-Physical System |
|
|
238 | (1) |
|
10.1.2 Statistical Model-Based Methodologies |
|
|
239 | (1) |
|
10.1.3 Spatial-and-Transient Closeness-Based Methodologies |
|
|
240 | (1) |
|
10.2 Feature Recovering Methodologies |
|
|
240 | (1) |
|
|
241 | (1) |
|
10.4 Collections, Sources, and Generations of Big Data for CPS |
|
|
242 | (1) |
|
10.4.1 Establishing Conscious Computation and Information Systems |
|
|
243 | (1) |
|
|
243 | (5) |
|
10.5.1 Global Optimization |
|
|
244 | (1) |
|
10.5.2 Big Data Analysis CPS |
|
|
245 | (1) |
|
10.5.3 Analysis of Cloud Data |
|
|
245 | (2) |
|
10.5.4 Analysis of Multi-Cloud Data |
|
|
247 | (1) |
|
10.6 Clustering of Big Data |
|
|
248 | (3) |
|
|
251 | (1) |
|
10.8 Cyber Security and Privacy Big Data |
|
|
251 | (5) |
|
10.8.1 Protection of Big Computing and Storage |
|
|
252 | (1) |
|
10.8.2 Big Data Analytics Protection |
|
|
252 | (4) |
|
10.8.3 Big Data CPS Applications |
|
|
256 | (1) |
|
|
256 | (2) |
|
10.10 Military Applications |
|
|
258 | (1) |
|
|
259 | (2) |
|
10.12 Clinical Applications |
|
|
261 | (1) |
|
|
262 | (1) |
|
10.14 Data Streams Clustering by Sensors |
|
|
263 | (1) |
|
|
263 | (1) |
|
10.16 Calculation Depiction |
|
|
264 | (1) |
|
|
265 | (1) |
|
10.18 Representative Maintenance and Clustering |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
268 | (13) |
|
|
269 | (12) |
|
11 Developing Decision Making and Risk Mitigation: Using CRISP-Data Mining |
|
|
281 | (36) |
|
|
|
|
|
282 | (1) |
|
|
283 | (1) |
|
11.3 Methodology of CRISP-DM |
|
|
284 | (2) |
|
11.4 Stage One--Determine Business Objectives |
|
|
286 | (4) |
|
11.4.1 What Are the Ideal Yields of the Venture? |
|
|
287 | (1) |
|
11.4.2 Evaluate the Current Circumstance |
|
|
288 | (1) |
|
11.4.3 Realizes Data Mining Goals |
|
|
289 | (1) |
|
11.5 Stage Two--Data Sympathetic |
|
|
290 | (2) |
|
|
291 | (1) |
|
|
291 | (1) |
|
11.5.3 Confirm Data Quality |
|
|
292 | (1) |
|
11.5.4 Data Excellence Description |
|
|
292 | (1) |
|
11.6 Stage Three--Data Preparation |
|
|
292 | (3) |
|
|
294 | (1) |
|
11.6.2 The Data Is Processed |
|
|
294 | (1) |
|
11.6.3 Data Needed to Build |
|
|
294 | (1) |
|
11.6.4 Combine Information |
|
|
295 | (1) |
|
11.7 Stage Four--Modeling |
|
|
295 | (3) |
|
11.7.1 Select Displaying Strategy |
|
|
296 | (1) |
|
11.7.2 Produce an Investigation Plan |
|
|
297 | (1) |
|
|
297 | (1) |
|
|
297 | (1) |
|
11.8 Stage Five--Evaluation |
|
|
298 | (2) |
|
11.8.1 Assess Your Outcomes |
|
|
299 | (1) |
|
|
299 | (1) |
|
11.8.3 Decide on the Subsequent Stages |
|
|
300 | (1) |
|
11.9 Stage Six--Deployment |
|
|
300 | (2) |
|
|
301 | (1) |
|
11.9.2 Plan Observing and Support |
|
|
301 | (1) |
|
11.9.3 Produce the Last Report |
|
|
302 | (1) |
|
|
302 | (1) |
|
11.10 Data on ERP Systems |
|
|
302 | (2) |
|
11.11 Usage of CRISP-DM Methodology |
|
|
304 | (2) |
|
|
306 | (4) |
|
11.12.1 Association Rule Mining (ARM) or Association Analysis |
|
|
307 | (1) |
|
11.12.2 Classification Algorithms |
|
|
307 | (1) |
|
11.12.3 Regression Algorithms |
|
|
308 | (1) |
|
11.12.4 Clustering Algorithms |
|
|
308 | (2) |
|
|
310 | (1) |
|
|
310 | (1) |
|
11.15 Results and Discussion |
|
|
310 | (1) |
|
|
311 | (6) |
|
|
314 | (3) |
|
12 Human-Machine Interaction and Visual Data Mining |
|
|
317 | (32) |
|
|
|
|
|
|
|
318 | (2) |
|
|
320 | (5) |
|
|
323 | (1) |
|
12.2.2 Data Visualization |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
326 | (1) |
|
12.5 Visual Strength and Conditioning |
|
|
326 | (1) |
|
|
327 | (1) |
|
|
327 | (1) |
|
12.8 Graphic Monitoring and Contact With Human-Computer |
|
|
328 | (4) |
|
12.9 Mining HCI Information Using Inductive Deduction Viewpoint |
|
|
332 | (2) |
|
12.10 Visual Data Mining Methodology |
|
|
334 | (4) |
|
12.11 Machine Learning Algorithms for Hand Gesture Recognition |
|
|
338 | (1) |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
340 | (1) |
|
12.15 Proposed Methodology for Hand Gesture Recognition |
|
|
340 | (3) |
|
|
343 | (1) |
|
|
343 | (6) |
|
|
344 | (5) |
|
13 MSDTrA: A Boosting Based-Transfer Learning Approach for Class Imbalanced Skin Lesion Dataset for Melanoma Detection |
|
|
349 | (16) |
|
|
|
|
|
349 | (3) |
|
|
352 | (1) |
|
13.3 Methods and Material |
|
|
353 | (4) |
|
13.3.1 Proposed Methodology: Multi Source Dynamic TrAdaBoost Algorithm |
|
|
355 | (2) |
|
13.4 Experimental Results |
|
|
357 | (1) |
|
|
357 | (1) |
|
13.6 Comparing Algorithms Based on Decision Boundaries |
|
|
357 | (1) |
|
|
358 | (3) |
|
|
361 | (4) |
|
|
361 | (4) |
|
14 New Algorithms and Technologies for Data Mining |
|
|
365 | (32) |
|
|
|
|
|
|
|
366 | (2) |
|
14.2 Machine Learning Algorithms |
|
|
368 | (1) |
|
|
368 | (1) |
|
14.4 Unsupervised Learning |
|
|
369 | (1) |
|
14.5 Semi-Supervised Learning |
|
|
369 | (2) |
|
14.6 Regression Algorithms |
|
|
371 | (1) |
|
14.7 Case-Based Algorithms |
|
|
371 | (1) |
|
14.8 Regularization Algorithms |
|
|
372 | (1) |
|
14.9 Decision Tree Algorithms |
|
|
372 | (1) |
|
14.10 Bayesian Algorithms |
|
|
373 | (1) |
|
14.11 Clustering Algorithms |
|
|
374 | (1) |
|
14.12 Association Rule Learning Algorithms |
|
|
375 | (1) |
|
14.13 Artificial Neural Network Algorithms |
|
|
375 | (1) |
|
14.14 Deep Learning Algorithms |
|
|
376 | (1) |
|
14.15 Dimensionality Reduction Algorithms |
|
|
377 | (1) |
|
14.16 Ensemble Algorithms |
|
|
377 | (1) |
|
14.17 Other Machine Learning Algorithms |
|
|
378 | (1) |
|
14.18 Data Mining Assignments |
|
|
378 | (3) |
|
|
381 | (1) |
|
14.20 Non-Parametric & Parametric Models |
|
|
381 | (1) |
|
14.21 Flexible vs. Restrictive Methods |
|
|
382 | (1) |
|
14.22 Unsupervised vs. Supervised Learning |
|
|
382 | (2) |
|
14.23 Data Mining Methods |
|
|
384 | (3) |
|
|
387 | (1) |
|
14.24.1 Organization Formation Procedure |
|
|
387 | (1) |
|
14.25 The Regret of Learning Phase |
|
|
388 | (4) |
|
|
392 | (5) |
|
|
392 | (5) |
|
15 Classification of EEG Signals for Detection of Epileptic Seizure Using Restricted Boltzmann Machine Classifier |
|
|
397 | (26) |
|
|
|
|
|
398 | (2) |
|
|
400 | (1) |
|
15.3 Material and Methods |
|
|
401 | (9) |
|
15.3.1 Dataset Description |
|
|
401 | (2) |
|
15.3.2 Proposed Methodology |
|
|
403 | (1) |
|
|
404 | (1) |
|
15.3.4 Preprocessing Using PCA |
|
|
404 | (2) |
|
15.3.5 Restricted Boltzmann Machine (RBM) |
|
|
406 | (1) |
|
15.3.6 Stochastic Binary Units (Bernoulli Variables) |
|
|
407 | (1) |
|
|
408 | (1) |
|
|
409 | (1) |
|
15.3.7.2 Contrastive Divergence (CD) |
|
|
409 | (1) |
|
15.4 Experimental Framework |
|
|
410 | (2) |
|
15.5 Experimental Results and Discussion |
|
|
412 | (2) |
|
15.5.1 Performance Measurement Criteria |
|
|
412 | (1) |
|
15.5.2 Experimental Results |
|
|
412 | (2) |
|
|
414 | (4) |
|
|
418 | (5) |
|
|
419 | (4) |
|
16 An Enhanced Security of Women and Children Using Machine Learning and Data Mining Techniques |
|
|
423 | (24) |
|
|
|
|
424 | (1) |
|
|
424 | (3) |
|
|
424 | (1) |
|
|
425 | (1) |
|
|
425 | (1) |
|
|
425 | (1) |
|
|
426 | (1) |
|
|
426 | (1) |
|
|
426 | (1) |
|
|
426 | (1) |
|
16.2.9 Self-Preservation Framework for Women With Area Following and SMS Alarming Through GSM Network |
|
|
426 | (1) |
|
16.2.10 Safe: A Women Security Framework |
|
|
427 | (1) |
|
16.2.11 Intelligent Safety System For Women Security |
|
|
427 | (1) |
|
16.2.12 A Mobile-Based Women Safety Application |
|
|
427 | (1) |
|
16.2.13 Self-Salvation--The Women's Security Module |
|
|
427 | (1) |
|
|
427 | (1) |
|
|
427 | (1) |
|
16.3.2 Issue Statement and Choice of Solution |
|
|
428 | (1) |
|
|
428 | (2) |
|
16.5 Pre-Preparation Data |
|
|
430 | (6) |
|
|
431 | (1) |
|
|
431 | (3) |
|
|
434 | (2) |
|
16.6 Application Development |
|
|
436 | (1) |
|
|
436 | (1) |
|
|
437 | (1) |
|
16.6.3 Innovations Used The Proposed Application Has Utilized After Technologies |
|
|
437 | (1) |
|
16.7 Use Case For The Application |
|
|
437 | (6) |
|
|
437 | (1) |
|
|
438 | (1) |
|
|
439 | (1) |
|
16.7.4 Misconduct Place Detector |
|
|
439 | (1) |
|
|
440 | (3) |
|
|
443 | (4) |
|
|
443 | (4) |
|
17 Conclusion and Future Direction in Data Mining and Machine Learning |
|
|
447 | (10) |
|
|
|
|
|
|
448 | (3) |
|
|
451 | (6) |
|
|
452 | (1) |
|
|
452 | (1) |
|
17.2.3 Three Activities for Object Recognition |
|
|
453 | (4) |
|
|
457 | (1) |
References |
|
457 | (4) |
Index |
|
461 | |