Muutke küpsiste eelistusi

E-raamat: Data Mining: Theory, Methodology, Techniques, and Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume provides a snapshot of the current state of the art in data mining, presenting it both in terms of technical developments and industrial applications. The collection of chapters is based on works presented at the Australasian Data Mining conferences and industrial forums. Authors include some of Australia's leading researchers and practitioners in data mining. The volume also contains chapters by regional and international authors.

This volume provides a snapshot of the current state of the art in data mining, presenting it both in terms of technical developments and industrial applications. The collection of chapters is based on works presented at the Australasian Data Mining conferences and industrial forums. Authors include some of Australia's leading researchers and practitioners in data mining. The volume also contains chapters by regional and international authors. The original papers were initially reviewed for the workshops, conferences and forums.The 25 articles in this state-of-the-art survey were carefully reviewed and selected from numerous contributions during at least two rounds of reviewing and improvement for inclusion in the book. They provide an interesting and broad update on current research and development in data mining. The book is divided into two parts. It starts with state-of-the-art research papers organized in topical sections on methodological advances, data linkage, text mining, and temporal and sequence mining. The second part comprises papers on state-of-the-art industrial applications from the fields of health, finance and retail.
Part 1: State-of-the-Art in Research
Methodological Advances
Generality Is Predictive of Prediction Accuracy
1(13)
Geoffrey I. Webb
Damien Brain
Visualisation and Exploration of Scientific Data Using Graphs
14(14)
Ben Raymond
Lee Belbin
A Case-Based Data Mining Platform
28(11)
Xingwen Wang
Joshua Zhexue Huang
Consolidated Trees: An Analysis of Structural Convergence
39(14)
Jesus M. Perez
Javier Muguerza
Olatz Arbelaitz
Ibai Gurrutxaga
Jose I. Martin
K Nearest Neighbor Edition to Guide Classification Tree Learning: Motivation and Experimental Results
53(11)
J.M. Martinez-Otzeta
B. Sierra
E. Lazkano
A. Astigarraga
Efficiently Identifying Exploratory Rules' Significance
64(14)
Shiying Huang
Geoffrey I. Webb
Mining Value-Based Item Packages -- An Integer Programming Approach
78(12)
N.R. Achuthan
Raj P. Gopalan
Amit Rudra
Decision Theoretic Fusion Framework for Actionability Using Data Mining on an Embedded System
90(15)
Heungkyu Lee
Sunmee Kang
Hanseok Ko
Use of Data Mining in System Development Life Cycle
105(13)
Richi Nayak
Tian Qiu
Mining MOUCLAS Patterns and Jumping MOUCLAS Patterns to Construct Classifiers
118(12)
Yalei Hao
Gerald Quirchmayr
Markus Stumptner
Data Linkage
A Probabilistic Geocoding System Utilising a Parcel Based Address File
130(16)
Peter Christen
Alan Willmore
Tim Churches
Decision Models for Record Linkage
146(15)
Lifang Gu
Rohan Baxter
Text Mining
Intelligent Document Filter for the Internet
161(15)
Deepani B. Guruge
Russel J. Stonier
Informing the Curious Negotiator: Automatic News Extraction from the Internet
176(16)
Debbie Zhang
Simeon J. Simoff
Text Mining for Insurance Claim Cost Prediction
192(11)
Inna Kolyshkina
Marcel van Rooyen
Temporal and Sequence Mining
An Application of Time-Changing Feature Selection
203(15)
Yihao Zhang
Mehmet A. Orgun
Weiqiang Lin
Warwick Graco
A Data Mining Approach to Analyze the Effect of Cognitive Style and Subjective Emotion on the Accuracy of Time-Series Forecasting
218(11)
Hung Kook Park
Byoungho Song
Hyeon-Joong Yoo
Dae Woong Rhee
Kang Ryoung Park
Juno Chang
A Multi-level Framework for the Analysis of Sequential Data
229(15)
Carl H. Mooney
Denise de Vries
John F. Roddick
Part 2: State-of-the-Art in Applications
Health
Hierarchical Hidden Markov Models: An Application to Health Insurance Data
244(16)
Ah Chung Tsoi
Shu Zhang
Markus Hagenbuchner
Identifying Risk Groups Associated with Colorectal Cancer
260(13)
Jie Chen
Hongxing He
Huidong Jin
Damien McAullay
Graham Williams
Chris Kelman
Mining Quantitative Association Rules in Protein Sequences
273(9)
Nitin Gupta
Nitin Mangal
Kamal Tiwari
Pabitra Mitra
Mining X-Ray Images of SARS Patients
282(13)
Xuanyang Xie
Xi Li
Shouhong Wan
Yuchang Gong
Finance and Retail
The Scamseek Project -- Text Mining for Financial Scams on the Internet
295(8)
Jon Patrick
A Data Mining Approach for Branch and ATM Site Evaluation
303(16)
Simon C.K. Shiu
James N.K. Liu
Jennie L.C. Lam
Bo Feng
The Effectiveness of Positive Data Sharing in Controlling the Growth of Indebtedness in Hong Kong Credit Card Industry
319(12)
Vincent To-Yee Ng
Wai Tak Yim
Stephen Chi-Fai Chan
Author Index 331