Muutke küpsiste eelistusi

E-raamat: Data Preparation Journey: Finding Your Way with R

(University of Victoria, Division of Continuing Studies, Canada)
  • Formaat - PDF+DRM
  • Hind: 72,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"The Data Preparation Journey: Finding Your Way with R introduces the principles of data preparation within in a systematic approach that follows a typical data science or statistical workflow. With that context, readers will work through practical solutions to resolving problems in data using the statistical and data science programming language R. These solutions include examples of complex real-world data, adding greater context and exposing the reader to greater technical challenges. This book focuses on the Import to Tidy to Transform steps. It demonstrates how "Visualise" is an important part of Exploratory Data Analysis, a strategy for identifying potential problems with the data prior to cleaning. This book is designed for readers with a working knowledge of data manipulation functions in R or other programming languages. It is suitable for academics for whom analyzing data is crucial, businesses who make decisions based on the insights gleaned from collecting data from customer interactions, andpublic servants who use data to inform policy and program decisions. The principles and practices described within The Data Preparation Journey apply regardless of the context"--

The Data Preparation Journey: Finding Your Way With R introduces the principles of data preparation within in a systematic approach that follows a typical data science or statistical workflow. With that context, readers will work through practical solutions to resolving problems in data using the statistical and data science programming language R. These solutions include examples of complex real-world data, adding greater context and exposing the reader to greater technical challenges. This book focuses on the Import to Tidy to Transform steps. It demonstrates how “Visualise” is an important part of Exploratory Data Analysis, a strategy for identifying potential problems with the data prior to cleaning.

This book is designed for readers with a working knowledge of data manipulation functions in R or other programming languages. It is suitable for academics for whom analyzing data is crucial, businesses who make decisions based on the insights gleaned from collecting data from customer interactions, and public servants who use data to inform policy and program decisions. The principles and practices described within The Data Preparation Journey apply regardless of the context.

Key Features:

  • Includes R package containing the code and data sets used in the book
  • Comprehensive examples of data preparation from a variety of disciplines
  • Defines the key principles of data preparation, from access to publication


The Data Preparation Journey: Finding Your Way with R introduces the principles of data preparation within in a systematic approach that follows a typical data science or statistical workflow. The principles and practices described within The Data Preparation Journey apply regardless of the context.

1. Introduction
2. Foundations
3. Data documentation
4. Importing data
5. Importing data: plain-text files
6. Importing data: Excel
7. Importing data: statistical software
8. Importing data: PDF files
9. Data from web sources
10. Linking to relational databases
11. Exploration and validation strategies
12. Cleaning techniques
13. Recap

Martin Monkman is a Senior Manager at MNP, and a Course Instructor at the University of Victoria Continuing Studies Business Intelligence and Data Analytics program. Prior to joining MNP, Martin had a long career at BC Stats, the provincial statistics agency in British Columbia, Canada, including a decade with the job title Provincial Statistician. Martin has Bachelor of Science and Master of Arts degrees in Geography from the University of Victoria, and he has been a member of the Statistical Society of Canada since 2022.