Muutke küpsiste eelistusi

E-raamat: Data Science in Applications

Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 185,24 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides an overview of a wide range of relevant applications and reveals how to solve them. Many of the latest applications in finance, technology, education, medicine and other important and relevant fields are data-driven. The volumes of data are enormous. Specific methods need to be developed or adapted to solve a particular problem. It illustrates data science in applications. These applications have in common the discovery of knowledge in data and the use of this knowledge to make real decisions. The set of examples presented serves as a recipe book for their direct application to similar problems or as a guide for the development of new, more sophisticated approaches. The intended readership is data scientists looking for appropriate solutions to their problems. In addition, the examples provided serves as material for lectures at universities.

Computational Thinking Design Application for STEAM Education.-
Education Data for Science: Case of Lithuania.- Imbalanced Data
Classification Approach Based on Clustered Training Set.- Baltic States in
Global Value Chains: Quantifying International Production Sharing at
Bilateral and Sectoral Levels.- The Soft Power Of Understanding Social Media
Dynamics: A Data-Driven Approach.- Bootstrapping  Network Autoregressive
Models for Testing Linearity.- Novel data science methodologies for essential
genes identification based on network analysis.- Acoustic Analysis for Vocal
Fold Assessment - Challenges, Trends, and Opportunities.- The Paradigm of an
Explainable Artificial Intelligence (XAI) and Data Science (DS) Based
Decision Support System (DSS).- Stock Portfolio Risk-Return Ratio
Optimisation using Grey Wolf Model.- Towards Seamless Execution of Deep
Learning Application on Heterogeneous HPC Systems.