Muutke küpsiste eelistusi

E-raamat: Data Science Fundamentals for Python and MongoDB

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-May-2018
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484235973
  • Formaat - EPUB+DRM
  • Hind: 34,57 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 10-May-2018
  • Kirjastus: APress
  • Keel: eng
  • ISBN-13: 9781484235973

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms. 

The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn’t required because complete examples are provided and explained.

Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is “rocky” at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced. 

What You'll Learn
  • Prepare for a career in data science
  • Work with complex data structures in Python
  • Simulate with Monte Carlo and Stochastic algorithms
  • Apply linear algebra using vectors and matrices
  • Utilize complex algorithms such as gradient descent and principal component analysis
  • Wrangle, cleanse, visualize, and problem solve with data
  • Use MongoDB and JSON to work with data
Who This Book Is For

The novice yearning to break into the data science world, and the enthusiast looking to enrich, deepen, and develop data science skills through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming will make learning easier.
About the Author ix
About the Technical Reviewer xi
Acknowledgments xiii
Chapter 1 Introduction
1(36)
Python Fundamentals
3(1)
Functions and Strings
3(3)
Lists, Tuples, and Dictionaries
6(6)
Reading and Writing Data
12(3)
List Comprehension
15(3)
Generators
18(4)
Data Randomization
22(5)
MongoDB and JSON
27(7)
Visualization
34(3)
Chapter 2 Monte Carlo Simulation and Density Functions
37(30)
Stock Simulations
37(5)
What-If Analysis
42(2)
Product Demand Simulation
44(8)
Randomness Using Probability and Cumulative Density Functions
52(15)
Chapter 3 Linear Algebra
67(30)
Vector Spaces
67(1)
Vector Math
68(7)
Matrix Math
75(9)
Basic Matrix Transformations
84(4)
Pandas Matrix Applications
88(9)
Chapter 4 Gradient Descent
97(32)
Simple Function Minimization (and Maximization)
97(7)
Sigmoid Function Minimization (and Maximization)
104(5)
Euclidean Distance Minimization Controlling for Step Size
109(3)
Stabilizing Euclidean Distance Minimization with Monte Carlo Simulation
112(3)
Substituting a NumPy Method to Hasten Euclidean Distance Minimization
115(3)
Stochastic Gradient Descent Minimization and Maximization
118(11)
Chapter 5 Working with Data
129(38)
One-Dimensional Data Example
129(3)
Two-Dimensional Data Example
132(3)
Data Correlation and Basic Statistics
135(3)
Pandas Correlation and Heat Map Examples
138(3)
Various Visualization Examples
141(5)
Cleaning a CSV File with Pandas and JSON
146(2)
Slicing and Dicing
148(1)
Data Cubes
149(5)
Data Scaling and Wrangling
154(13)
Chapter 6 Exploring Data
167(44)
Heat Maps
167(3)
Principal Component Analysis
170(9)
Speed Simulation
179(3)
Big Data
182(19)
Twitter
201(4)
Web Scraping
205(6)
Index 211
Dr. David Paper is a full professor at Utah State University in the Management Information Systems department. He wrote the book Web Programming for Business: PHP Object-Oriented Programming with Oracle and he has over 70 publications in refereed journals such as Organizational Research Methods, Communications of the ACM, Information & Management, Information Resource Management Journal, Communications of the AIS, Journal of Information Technology Case and Application Research, and Long Range Planning. He has also served on several editorial boards in various capacities, including associate editor. Besides growing up in family businesses, Dr. Paper has worked for Texas Instruments, DLS, Inc., and the Phoenix Small Business Administration. He has performed IS consulting work for IBM, AT&T, Octel, Utah Department of Transportation, and the Space Dynamics Laboratory. Dr. Paper's teaching and research interests include data science, process reengineering, object-oriented programming, electronic customer relationship management, change management, e-commerce, and enterprise integration.