Muutke küpsiste eelistusi

E-raamat: Data Science and Machine Learning for Non-Programmers: Using SAS Enterprise Miner

  • Formaat - PDF+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

As data continues to grow exponentially, knowledge of data science and machine learning has become more crucial than ever. Machine learning has grown exponentially; however, the abundance of resources can be overwhelming, making it challenging for new learners. This book aims to address this disparity and cater to learners from various non-technical fields, enabling them to utilize machine learning effectively.

Adopting a hands-on approach, readers are guided through practical implementations using real datasets and SAS Enterprise Miner, a user-friendly data mining software that requires no programming. Throughout the chapters, two large datasets are used consistently, allowing readers to practice all stages of the data mining process within a cohesive project framework. This book also provides specific guidelines and examples on presenting data mining results and reports, enhancing effective communication with stakeholders.

Designed as a guiding companion for both beginners and experienced practitioners, this book targets a wide audience, including students, lecturers, researchers, and industry professionals from various backgrounds.



As data continues to grow exponentially, knowledge of data science and machine learning has become more crucial than ever. Machine learning has grown exponentially, however, the abundance of resources can be overwhelming

Part I: Introduction to Data Mining.
1. Introduction to Data Mining and Data Science.
2. Data Mining Processes, Methods, and Software.
3. Data Sampling and Partitioning.
4. Data Visualization and Exploration.
5. Data Modification. Part II: Data Mining Methods. 6. Model Evaluation.
7. Regression Methods.
8. Decision Trees.
9. Neural Networks.
10. Ensemble Modeling.
11. Presenting Results and Writing Data Mining Reports.
12. Principal Component Analysis.
13. Cluster Analysis. Part III: Advanced Data Mining Methods. 14. Random Forest.
15. Gradient Boosting.
16. Bayesian Networks.

Dothang Truong, PhD, is a Professor of Graduate Studies at Embry Riddle Aeronautical University, Daytona Beach, Florida. He has extensive teaching and research experience in machine learning, data analytics, air transportation management, and supply chain management. In 2022, Dr. Truong received the Frank Sorenson Award for outstanding achievement of excellence in aviation research and scholarship.