Muutke küpsiste eelistusi

E-raamat: Data Science in Practice

Edited by , Edited by
  • Formaat: PDF+DRM
  • Sari: Studies in Big Data 46
  • Ilmumisaeg: 19-Sep-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319975566
  • Formaat - PDF+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Studies in Big Data 46
  • Ilmumisaeg: 19-Sep-2018
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319975566

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book approaches big data, artificial intelligence, machine learning, and business intelligence through the lens of Data Science. We have grown accustomed to seeing these terms mentioned time and time again in the mainstream media. However, our understanding of what they actually mean often remains limited. This book provides a general overview of the terms and approaches used broadly in data science, and provides detailed information on the underlying theories, models, and application scenarios. Divided into three main parts, it addresses what data science is; how and where it is used; and how it can be implemented using modern open source software. The book offers an essential guide to modern data science for all students, practitioners, developers and managers seeking a deeper understanding of how various aspects of data science work, and of how they can be employed to gain a competitive advantage.
1 Data Science: An Introduction
1(8)
Alan Said
Vicenc Torra
Part I Concepts
2 Artificial Intelligence
9(18)
Vicenc Torra
Alexander Karlsson
H. Joe Steinhauer
Stefan Berglund
3 Machine Learning: A Concise Overview
27(34)
Denio Duarte
Niclas Stahl
Part II Application Domains
4 Information Fusion
61(18)
H. Joe Steinhauer
Alexander Karlsson
5 Information Retrieval and Recommender Systems
79(18)
Alejandro Bellogin
Alan Said
6 Business Intelligence
97(24)
Carl Anderson
Part III Tools
7 Data Privacy
121(12)
Vicenc Torra
Guillermo Navarro-Arribas
Klara Stokes
8 Visual Data Analysis
133(24)
Juhee Bae
Goran Falkman
Tove Helldin
Maria Riveiro
9 Complex Data Analysis
157(14)
Juhee Bae
Alexander Karlsson
Jonas Mellin
Niclas Stahl
Vicenc Torra
10 Big Data Programming with Apache Spark
171(24)
Elio Ventocilla
Author Index 195