List of Figures |
|
xiii | |
List of Tables |
|
xix | |
Preface |
|
xxiii | |
Acknowledgments |
|
xxv | |
Chapter 1 Survey |
|
1 | (40) |
|
1.1 Introduction of Kernel Analysis |
|
|
1 | (1) |
|
1.2 Kernel Offline Learning |
|
|
2 | (10) |
|
1.2.1 Choose the Appropriate Kernels |
|
|
3 | (3) |
|
1.2.2 Adopt KA into the Traditionally Developed Machine Learning Techniques |
|
|
6 | (3) |
|
1.2.3 Structured Database with Kernel |
|
|
9 | (3) |
|
1.3 Distributed Database with Kernel |
|
|
12 | (4) |
|
1.3.1 Multiple Database Representation |
|
|
12 | (1) |
|
1.3.2 Kernel Selections Among Heterogeneous Multiple Databases |
|
|
13 | (1) |
|
1.3.3 Multiple Database Representation KA Applications to Distributed Databases |
|
|
14 | (2) |
|
1.4 Kernel Online Learning |
|
|
16 | (6) |
|
1.4.1 Kernel-Based Online Learning Algorithms |
|
|
16 | (1) |
|
1.4.2 Adopt "Online" KA Framework into the Traditionally Developed Machine Learning Techniques |
|
|
17 | (4) |
|
1.4.3 Relationship Between Online Learning and Prediction Techniques |
|
|
21 | (1) |
|
1.5 Prediction with Kernels |
|
|
22 | (4) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
1.5.4 Autoregressive Moving Average Model |
|
|
24 | (1) |
|
1.5.5 Comparison of Four Models |
|
|
25 | (1) |
|
1.6 Future Direction and Conclusion |
|
|
26 | (1) |
|
|
26 | (15) |
Chapter 2 Offline Kernel Analysis |
|
41 | (28) |
|
|
41 | (2) |
|
2.2 Kernel Feature Analysis |
|
|
43 | (6) |
|
|
43 | (2) |
|
2.2.2 Kernel Principal Component Analysis (KPCA) |
|
|
45 | (1) |
|
2.2.3 Accelerated Kernel Feature Analysis (AKFA) |
|
|
46 | (2) |
|
2.2.4 Comparison of the Relevant Kernel Methods |
|
|
48 | (1) |
|
2.3 Principal Composite Kernel Feature Analysis (PC-KFA) |
|
|
49 | (5) |
|
|
49 | (3) |
|
2.3.2 Kernel Combinatory Optimization |
|
|
52 | (2) |
|
2.4 Experimental Analysis |
|
|
54 | (7) |
|
2.4.1 Cancer Image Datasets |
|
|
54 | (2) |
|
|
56 | (2) |
|
2.4.3 Kernel Combination and Reconstruction |
|
|
58 | (1) |
|
2.4.4 Kernel Combination and Classification |
|
|
59 | (1) |
|
2.4.5 Comparisons of Other Composite Kernel Learning Studies |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (7) |
Chapter 3 Group Kernel Feature Analysis |
|
69 | (28) |
|
|
69 | (2) |
|
3.2 Kernel Principal Component Analysis (KPCA) |
|
|
71 | (2) |
|
3.3 Kernel Feature Analysis (KFA) for Distributed Databases |
|
|
73 | (5) |
|
3.3.1 Extract Data-Dependent Kernels Using KFA |
|
|
73 | (2) |
|
3.3.2 Decomposition of Database Through Data Association via Recursively Updating Kernel Matrices |
|
|
75 | (3) |
|
3.4 Group Kernel Feature Analysis (GKFA) |
|
|
78 | (5) |
|
3.4.1 Composite Kernel: Kernel Combinatory Optimization |
|
|
79 | (2) |
|
3.4.2 Multiple Databases Using Composite Kernel |
|
|
81 | (2) |
|
|
83 | (8) |
|
|
83 | (1) |
|
3.5.2 Optimal Selection of Data-Dependent Kernels |
|
|
84 | (1) |
|
3.5.3 Kernel Combinatory Optimization |
|
|
84 | (2) |
|
3.5.4 Composite Kernel for Multiple Databases |
|
|
86 | (1) |
|
3.5.5 K-NN Classification Evaluation with ROC |
|
|
87 | (2) |
|
3.5.6 Comparison of Results with Other Studies on Colonography |
|
|
89 | (1) |
|
3.5.7 Computational Speed and Scalability Evaluation of GKFA |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (5) |
Chapter 4 Online Kernel Analysis |
|
97 | (24) |
|
|
97 | (2) |
|
4.2 Kernel Basics: A Brief Review |
|
|
99 | (2) |
|
4.2.1 Kernel Principal Component Analysis |
|
|
99 | (1) |
|
|
100 | (1) |
|
4.3 Kernel Adaptation Analysis of PC-KFA |
|
|
101 | (1) |
|
4.4 Heterogeneous vs. Homogeneous Data for Online PC-KFA |
|
|
102 | (2) |
|
4.4.1 Updating the Gram Matrix of the Online Data |
|
|
103 | (1) |
|
4.4.2 Composite Kernel for Online Data |
|
|
104 | (1) |
|
4.5 Long-Term Sequential Trajectories with Self-Monitoring |
|
|
104 | (3) |
|
4.5.1 Reevaluation of Large Online Data |
|
|
105 | (1) |
|
4.5.2 Validation of Decomposing Online Data into Small Chunks |
|
|
106 | (1) |
|
|
107 | (10) |
|
|
107 | (1) |
|
4.6.2 Selection of Optimum Kernel and Composite Kernel for Offline Data |
|
|
108 | (2) |
|
4.6.3 Selection of Optimum Kernel and Composite Kernel for the New Online Sequences |
|
|
110 | (1) |
|
4.6.4 Classification of Heterogeneous Versus Homogeneous Data |
|
|
111 | (1) |
|
4.6.5 Online Learning Evaluation of Long-term Sequence |
|
|
112 | (4) |
|
4.6.6 Evaluation of Computational Time |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
117 | (4) |
Chapter 5 Cloud Kernel Analysis |
|
121 | (32) |
|
|
121 | (2) |
|
|
123 | (2) |
|
5.2.1 Server Specifications of Cloud Platforms |
|
|
123 | (1) |
|
5.2.2 Cloud Framework of KPCA for AMD |
|
|
124 | (1) |
|
5.3 AMD for Cloud Colonography |
|
|
125 | (10) |
|
|
125 | (1) |
|
5.3.2 Data Configuration of AMD |
|
|
126 | (3) |
|
5.3.3 Implementation of AMD for Two Cloud Cases |
|
|
129 | (3) |
|
5.3.4 Parallelization of AMD |
|
|
132 | (3) |
|
5.4 Classification Evaluation of Cloud Colonography |
|
|
135 | (5) |
|
5.4.1 Databases with Classification Criteria |
|
|
135 | (2) |
|
5.4.2 Classification Results |
|
|
137 | (3) |
|
5.5 Cloud Computing Performance |
|
|
140 | (6) |
|
5.5.1 Cloud Computing Setting with Cancer Databases |
|
|
140 | (2) |
|
|
142 | (2) |
|
|
144 | (1) |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (6) |
Chapter 6 Predictive Kernel Analysis |
|
153 | (32) |
|
|
153 | (1) |
|
|
154 | (3) |
|
|
155 | (2) |
|
6.3 Stationary Data Training |
|
|
157 | (3) |
|
|
157 | (2) |
|
6.3.2 Composite Kernel: Kernel Combinatory Optimization |
|
|
159 | (1) |
|
6.4 Longitudinal Nonstationary Data with Anomaly Normal Detection |
|
|
160 | (3) |
|
6.4.1 Updating the Gram Matrix Based on Nonstationary Longitudinal Data |
|
|
160 | (2) |
|
6.4.2 Composite Kernel for Nonstationary Data |
|
|
162 | (1) |
|
6.5 Longitudinal Sequential Trajectories for Anomaly Detection and Prediction |
|
|
163 | (6) |
|
6.5.1 Anomaly Detection of Nonstationary Small Chunks Datasets |
|
|
164 | (3) |
|
6.5.2 Anomaly Prediction of Long-Time Sequential Trajectories |
|
|
167 | (2) |
|
6.6 Classification Results |
|
|
169 | (6) |
|
|
169 | (1) |
|
6.6.2 Selection of Optimum Kernel and Composite Kernel for Stationary Data |
|
|
170 | (2) |
|
6.6.3 Comparisons with Other Kernel Learning Methods |
|
|
172 | (2) |
|
6.6.4 Anomaly Detection for the Nonstationary Data |
|
|
174 | (1) |
|
6.7 Longitudinal Prediction Results |
|
|
175 | (5) |
|
6.7.1 Large Nonstationary Sequential dataset for Anomaly Detection |
|
|
175 | (3) |
|
6.7.2 Time Horizontal Prediction for Risk Factor Analysis of Anomaly Long-Time Sequential Trajectories |
|
|
178 | (1) |
|
6.7.3 Computational Time for Complexity Evaluation |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (4) |
Chapter 7 Conclusion |
|
185 | (4) |
Appendix A |
|
189 | (6) |
Appendix B Representative Matiab codes |
|
195 | (20) |
|
B.1 Accelerated Kernel Feature Analysis |
|
|
196 | (2) |
|
B.2 Experimental Evaluations |
|
|
198 | (3) |
|
B.3 Group Kernel Analysis |
|
|
201 | (5) |
|
B.4 Online Composite Kernel Analysis |
|
|
206 | (2) |
|
B.5 Online Data Sequences Control |
|
|
208 | (1) |
|
|
209 | (1) |
|
B.7 Cloud Kernel Analysis |
|
|
210 | (1) |
|
B.8 Plot Computation Time |
|
|
211 | (1) |
|
|
212 | (3) |
Index |
|
215 | |