Introduction |
|
xxvii | |
1 Data Warehousing, Business Intelligence, and Dimensional Modeling Primer |
|
1 | (36) |
|
Different Worlds of Data Capture and Data Analysis |
|
|
2 | (1) |
|
Goals of Data Warehousing and Business Intelligence |
|
|
3 | (4) |
|
Publishing Metaphor for DW/BI Managers |
|
|
5 | (2) |
|
Dimensional Modeling Introduction |
|
|
7 | (11) |
|
Star Schemas Versus OLAP Cubes |
|
|
8 | (2) |
|
Fact Tables for Measurements |
|
|
10 | (3) |
|
Dimension Tables for Descriptive Context |
|
|
13 | (3) |
|
Facts and Dimensions Joined in a Star Schema |
|
|
16 | (2) |
|
Kimball's DW/BI Architecture |
|
|
18 | (8) |
|
Operational Source Systems |
|
|
18 | (1) |
|
Extract, Transformation, and Load System |
|
|
19 | (2) |
|
Presentation Area to Support Business Intelligence |
|
|
21 | (1) |
|
Business Intelligence Applications |
|
|
22 | (1) |
|
Restaurant Metaphor for the Kimball Architecture |
|
|
23 | (3) |
|
Alternative DW/BI Architectures |
|
|
26 | (4) |
|
Independent Data Mart Architecture |
|
|
26 | (2) |
|
Hub-and-Spoke Corporate, Information Factory Inmon Architecture |
|
|
28 | (1) |
|
Hybrid Hub-and-Spoke and Kimball Architecture |
|
|
29 | (1) |
|
Dimensional Modeling Myths |
|
|
30 | (2) |
|
Myth 1: Dimensional Models are Only for Summary Data |
|
|
30 | (1) |
|
Myth 2: Dimensional Models are Departmental, Not Enterprise |
|
|
31 | (1) |
|
Myth 3: Dimensional Models are Not Scalable |
|
|
31 | (1) |
|
Myth 4: Dimensional Models are Only for Predictable Usage |
|
|
31 | (1) |
|
Myth 5: Dimensional Models Can't Be Integrated |
|
|
32 | (1) |
|
More Reasons to Think Dimensionally |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
35 | (2) |
2 Kimball Dimensional Modeling Techniques Overview |
|
37 | (32) |
|
|
37 | (4) |
|
Gather Business Requirements and Data Realities |
|
|
37 | (1) |
|
Collaborative Dimensional Modeling Workshops |
|
|
38 | (1) |
|
Four-Step Dimensional Design Process |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
Dimensions for Descriptive Context |
|
|
40 | (1) |
|
|
40 | (1) |
|
Star Schemas and OLAP Cubes |
|
|
40 | (1) |
|
Graceful Extensions to Dimensional Models |
|
|
41 | (1) |
|
Basic Fact Table Techniques |
|
|
41 | (5) |
|
|
41 | (1) |
|
Additive, Semi-Additive, Non-Additive Facts |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
Periodic Snapshot Fact Tables |
|
|
43 | (1) |
|
Accumulating Snapshot Fact Tables |
|
|
44 | (1) |
|
|
44 | (1) |
|
Aggregate Fact Tables or OLAP Cubes |
|
|
45 | (1) |
|
|
45 | (1) |
|
Basic Dimension Table Techniques |
|
|
46 | (4) |
|
Dimension Table Structure |
|
|
46 | (1) |
|
|
46 | (1) |
|
Natural, Durable, and Supernatural Keys |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
Denormalized Flattened Dimensions |
|
|
47 | (1) |
|
Multiple Hierarchies in Dimensions |
|
|
48 | (1) |
|
Flags and indicators a Textual Attributes |
|
|
48 | (1) |
|
Null Attributes in Dimensions |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
Integration via Conformed Dimensions |
|
|
50 | (3) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
Enterprise Data Warehouse Bus Architecture |
|
|
52 | (1) |
|
Enterprise Data Warehouse Bus Matrix |
|
|
52 | (1) |
|
Detailed Implementation Bus Matrix |
|
|
53 | (1) |
|
Opportunity/Stakeholder Matrix |
|
|
53 | (1) |
|
Dealing with Slowly Changing Dimension Attributes |
|
|
53 | (3) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
Type 3: Add New Attribute |
|
|
55 | (1) |
|
Type 4: Add Mini-Dimension |
|
|
55 | (1) |
|
Type 5: Add Mini-Dimension and Type 1 Outrigger |
|
|
55 | (1) |
|
Type 6: Add Type 1 Attributes to Type 2 Dimension |
|
|
56 | (1) |
|
Type 7: Dual Type 1 and Type 2 Dimensions |
|
|
56 | (1) |
|
Dealing with Dimension Hierarchies |
|
|
56 | (2) |
|
Fixed Depth Positional Hierarchies |
|
|
56 | (1) |
|
Slightly Ragged/Variable Depth Hierarchies |
|
|
57 | (1) |
|
Ragged/Variable Depth Hierarchies with Hierarchy Bridge Tables |
|
|
57 | (1) |
|
Ragged/Variable Depth Hierarchies with Pathstring Attributes |
|
|
57 | (1) |
|
Advanced Fact Table Techniques |
|
|
58 | (4) |
|
Fact Table Surrogate Keys |
|
|
58 | (1) |
|
|
58 | (1) |
|
Numeric Values as Attributes or Facts |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
Profit and Loss Fact Tables Using' Allocations |
|
|
60 | (1) |
|
|
60 | (1) |
|
Multiple Units of Measure Facts |
|
|
61 | (1) |
|
|
61 | (1) |
|
Multipass SQL to Avoid Fact-to-Fact Table Joins |
|
|
61 | (1) |
|
Timespan Tracking in Fact Tables |
|
|
62 | (1) |
|
|
62 | (1) |
|
Advanced Dimension Techniques |
|
|
62 | (5) |
|
Dimension-to-Dimension Table Joins |
|
|
62 | (1) |
|
Multivalued Dimensions and Bridge Tables |
|
|
63 | (1) |
|
Time Varying Multivalued Bridge Tables |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
Aggregated Facts as Dimension Attributes |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
Abstract Generic Dimensions |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (1) |
|
|
67 | (2) |
|
Supertype and Subtype Schemas for Heterogeneous Products |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
3 Retail Sales |
|
69 | (42) |
|
Four-Step Dimensional Design Process |
|
|
70 | (2) |
|
Step 1: Select the Business Process |
|
|
70 | (1) |
|
Step 2: Declare the Grain |
|
|
71 | (1) |
|
Step 3: Identify the Dimensions |
|
|
72 | (1) |
|
Step 4: Identify the Facts |
|
|
72 | (1) |
|
|
72 | (7) |
|
Step 1: Select the Business Process |
|
|
74 | (1) |
|
Step 2: Declare the Grain |
|
|
74 | (2) |
|
Step 3: Identify the Dimensions |
|
|
76 | (1) |
|
Step 4: Identify the Facts |
|
|
76 | (3) |
|
|
79 | (15) |
|
|
79 | (4) |
|
|
83 | (4) |
|
|
87 | (2) |
|
|
89 | (3) |
|
Other Retail Sales Dimensions |
|
|
92 | (1) |
|
Degenerate Dimensions for Transaction Numbers |
|
|
93 | (1) |
|
|
94 | (1) |
|
Retail Schema Extensibility |
|
|
95 | (2) |
|
|
97 | (1) |
|
Dimension and Fact Table Keys |
|
|
98 | (6) |
|
Dimension Table Surrogate Keys |
|
|
98 | (2) |
|
Dimension Natural and Durable Supernatural Keys |
|
|
100 | (1) |
|
Degenerate Dimension Surrogate Keys |
|
|
101 | (1) |
|
Date Dimension Smart Keys |
|
|
101 | (1) |
|
Fact Table Surrogate Keys |
|
|
102 | (2) |
|
Resisting Normalization Urges |
|
|
104 | (5) |
|
Snowflake Schemas with Normalized Dimensions |
|
|
104 | (2) |
|
|
106 | (2) |
|
Centipede Fact Tables with Too Many Dimensions |
|
|
108 | (1) |
|
|
109 | (2) |
4 Inventory |
|
111 | (30) |
|
|
111 | (1) |
|
|
112 | (7) |
|
Inventory Periodic Snapshot |
|
|
113 | (3) |
|
|
116 | (2) |
|
Inventory Accumulating Snapshot |
|
|
118 | (1) |
|
|
119 | (3) |
|
|
120 | (1) |
|
Periodic Snapshot Fact Tables |
|
|
120 | (1) |
|
Accumulating Snapshot Fact Tables |
|
|
121 | (1) |
|
Complementary Fact Table Types |
|
|
122 | (1) |
|
|
122 | (1) |
|
Enterprise Data Warehouse Bus Architecture |
|
|
123 | (7) |
|
Understanding the Bus Architecture |
|
|
124 | (1) |
|
Enterprise Data Warehouse Bus Matrix |
|
|
125 | (5) |
|
|
130 | (8) |
|
Drilling Across Fact Tables |
|
|
130 | (1) |
|
Identical Conformed Dimensions |
|
|
131 | (1) |
|
Shrunken Rollup Conformed Dimension with Attribute Subset |
|
|
132 | (1) |
|
Shrunken Conformed Dimension with Row Subset |
|
|
132 | (2) |
|
Shrunken Conformed Dimensions on the Bus Matrix |
|
|
134 | (1) |
|
|
135 | (1) |
|
Importance of Data Governance and Stewardship |
|
|
135 | (2) |
|
Conformed Dimensions and the Agile Movement |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (2) |
5 Procurement |
|
141 | (26) |
|
|
141 | (1) |
|
Procurement Transactions and Bus Matrix |
|
|
142 | (5) |
|
Single Versus Multiple Transaction Fact Tables |
|
|
143 | (4) |
|
Complementary Procurement Snapshot |
|
|
147 | (1) |
|
Slowly Changing Dimension Basics |
|
|
147 | (12) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
150 | (4) |
|
Type 3: Add New Attribute |
|
|
154 | (2) |
|
Type 4: Add Mini-Dimension |
|
|
156 | (3) |
|
Hybrid Slowly Changing Dimension Techniques, |
|
|
159 | (5) |
|
Type 5: Mini-Dimension and Type 1 Outrigger |
|
|
160 | (1) |
|
Type 6: Add Type 1 Attributes to Type 2 Dimension |
|
|
160 | (2) |
|
Type 7: Dual Type 1 and Type 2 Dimensions |
|
|
162 | (2) |
|
Slowly Changing Dimension Recap |
|
|
164 | (1) |
|
|
165 | (2) |
6 Order Management |
|
167 | (34) |
|
Order Management Bus Matrix |
|
|
168 | (1) |
|
|
168 | (19) |
|
|
169 | (1) |
|
|
170 | (2) |
|
Product Dimension Revisited |
|
|
172 | (2) |
|
|
174 | (3) |
|
|
177 | (1) |
|
Degenerate Dimension for Order Number |
|
|
178 | (1) |
|
|
179 | (2) |
|
Header/Line Pattern to Avoid |
|
|
181 | (1) |
|
|
182 | (2) |
|
Transaction Facts at Different Granularity |
|
|
184 | (2) |
|
Another Header/Line Pattern to Avoid |
|
|
186 | (1) |
|
|
187 | (7) |
|
Service Level Performance as Facts, Dimensions, or Both |
|
|
188 | (1) |
|
|
189 | (3) |
|
|
192 | (2) |
|
Accumulating Snapshot for Order Fulfillment Pipeline |
|
|
194 | (5) |
|
|
196 | (1) |
|
Multiple Units of Measure |
|
|
197 | (1) |
|
Beyond the Rearview Mirror |
|
|
198 | (1) |
|
|
199 | (2) |
7 Accounting |
|
201 | (28) |
|
Accounting Case Study and Bus Matrix |
|
|
202 | (1) |
|
|
203 | (7) |
|
General Ledger Periodic Snapshot |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
204 | (2) |
|
|
206 | (1) |
|
Multiple Currencies Revisited |
|
|
206 | (1) |
|
General Ledger Journal Transactions |
|
|
206 | (2) |
|
Multiple Fiscal Accounting Calendars |
|
|
208 | (1) |
|
Drilling Down Through a Multilevel Hierarchy |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (4) |
|
Dimension Attribute Hierarchies |
|
|
214 | (10) |
|
Fixed Depth Positional Hierarchies |
|
|
214 | (1) |
|
Slightly Ragged Variable Depth Hierarchies |
|
|
214 | (1) |
|
Ragged Variable Depth Hierarchies |
|
|
215 | (4) |
|
Shared Ownership in a Ragged Hierarchy |
|
|
219 | (1) |
|
Time Varying Ragged Hierarchies |
|
|
220 | (1) |
|
Modifying Ragged Hierarchies |
|
|
220 | (1) |
|
Alternative Ragged Hierarchy Modeling Approaches |
|
|
221 | (2) |
|
Advantages of the Bridge Table Approach for Ragged Hierarchies |
|
|
223 | (1) |
|
|
224 | (2) |
|
Role of OLAP and Packaged Analytic Solutions |
|
|
226 | (1) |
|
|
227 | (2) |
8 Customer Relationship Management |
|
229 | (34) |
|
|
230 | (3) |
|
Operational and Analytic CRM |
|
|
231 | (2) |
|
Customer Dimension Attributes |
|
|
233 | (12) |
|
|
233 | (3) |
|
International Name and Address Considerations |
|
|
236 | (2) |
|
|
238 | (1) |
|
Aggregated Facts as Dimension Attributes |
|
|
239 | (1) |
|
Segmentation Attributes and Scores |
|
|
240 | (3) |
|
Counts with Type 2 Dimension Changes |
|
|
243 | (1) |
|
Outrigger for Low Cardinality Attribute Set |
|
|
243 | (1) |
|
Customer Hierarchy Considerations |
|
|
244 | (1) |
|
Bridge Tables for Multivalued Dimensions |
|
|
245 | (4) |
|
Bridge Table for Sparse Attributes |
|
|
247 | (1) |
|
Bridge Table for Multiple Customer, Contacts |
|
|
248 | (1) |
|
Complex Customer Behavior |
|
|
249 | (7) |
|
Behavior Study Groups for Cohorts |
|
|
249 | (2) |
|
Step Dimension for Sequential Behavior |
|
|
251 | (1) |
|
|
252 | (2) |
|
Tagging Fact Tables with Satisfaction Indicators |
|
|
254 | (1) |
|
Tagging Fact Table, with Abnormal Scenario Indicators |
|
|
255 | (1) |
|
Customer Data-Integration Approaches |
|
|
256 | (4) |
|
Master Data Management Creating a Single Customer Dimension |
|
|
256 | (2) |
|
Partial Conformity of Multiple Customer Dimensions |
|
|
258 | (1) |
|
Avoiding Fact-to-Fact Table Joins |
|
|
259 | (1) |
|
Low Latency Reality Check |
|
|
260 | (1) |
|
|
261 | (2) |
9 Human Resources Management |
|
263 | (18) |
|
Employee Profile Tracking |
|
|
263 | (4) |
|
Precise Effective and Expiration Timespans |
|
|
265 | (1) |
|
Dimension Change Reason Tracking |
|
|
266 | (1) |
|
Profile Changes as Type 2 Attributes or Fact Events |
|
|
267 | (1) |
|
Headcount Periodic Snapshot |
|
|
267 | (1) |
|
Bus Matrix for HR Processes |
|
|
268 | (2) |
|
Packaged Analytic Solutions and Data Models |
|
|
270 | (1) |
|
Recursive Employee Hierarchies |
|
|
271 | (3) |
|
Change Tracking on Embedded Manager Key |
|
|
272 | (1) |
|
Drilling Up and Down Management Hierarchies |
|
|
273 | (1) |
|
Multivalued Skill Keyword Attributes |
|
|
274 | (3) |
|
|
275 | (1) |
|
Skill Keyword Text String |
|
|
276 | (1) |
|
Survey Questionnaire Data |
|
|
277 | (2) |
|
|
278 | (1) |
|
|
279 | (2) |
10 Financial Services |
|
281 | (16) |
|
Banking Case Study and Bus Matrix |
|
|
282 | (1) |
|
Dimension Triage to Avoid Too Few Dimensions |
|
|
283 | (10) |
|
|
286 | (1) |
|
Multivalued Dimensions and Weighting Factors |
|
|
287 | (2) |
|
Mini-Dimensions Revisited |
|
|
289 | (1) |
|
Adding a Mini-Dimension to a Bridge Table |
|
|
290 | (1) |
|
Dynamic Value Banding of Facts |
|
|
291 | (2) |
|
Supertype and Subtype Schemas for Heterogeneous Products |
|
|
293 | (3) |
|
Supertype and Subtype Products with Common Facts, |
|
|
295 | (1) |
|
|
296 | (1) |
|
|
296 | (1) |
11 Telecommunications |
|
297 | (14) |
|
Telecommunications Case Study and Bus Matrix |
|
|
297 | (2) |
|
General Design Review Considerations |
|
|
299 | (5) |
|
Balance Business Requirements and Source Realities |
|
|
300 | (1) |
|
Focus on Business Processes |
|
|
300 | (1) |
|
|
300 | (1) |
|
Single Granularity for Facts |
|
|
301 | (1) |
|
Dimension Granularity and Hierarchies |
|
|
301 | (1) |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
303 | (1) |
|
Dimension Decodes and Descriptions |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
304 | (2) |
|
Draft Design Exercise Discussion |
|
|
306 | (3) |
|
Remodeling Existing Data Structures |
|
|
309 | (1) |
|
Geographic Location Dimension |
|
|
310 | (1) |
|
|
310 | (1) |
12 Transportation |
|
311 | (14) |
|
Airline Case Study and Bus Matrix |
|
|
311 | (6) |
|
Multiple Fact Table Granularities |
|
|
312 | (3) |
|
Linking Segments into Trips |
|
|
315 | (1) |
|
|
316 | (1) |
|
Extensions to Other Industries |
|
|
317 | (1) |
|
|
317 | (1) |
|
|
317 | (1) |
|
Combining Correlated Dimensions |
|
|
318 | (3) |
|
|
319 | (1) |
|
|
320 | (1) |
|
More Date and Time Considerations |
|
|
321 | (3) |
|
Country-Specific Calendars as Outriggers |
|
|
321 | (2) |
|
Date and Time in Multiple Time Zones |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
324 | (1) |
13 Education |
|
325 | (14) |
|
University Case Study and Bus Matrix |
|
|
325 | (1) |
|
Accumulating Snapshot Fact Tables |
|
|
326 | (3) |
|
|
326 | (3) |
|
Research Grant Proposal Pipeline |
|
|
329 | (1) |
|
|
329 | (7) |
|
|
330 | (1) |
|
|
330 | (4) |
|
|
334 | (1) |
|
|
335 | (1) |
|
More Educational Analytic Opportunities |
|
|
336 | (1) |
|
|
336 | (3) |
14 Healthcare |
|
339 | (14) |
|
Healthcare Case Study and Bus Matrix |
|
|
339 | (3) |
|
Claims Billing and Payments |
|
|
342 | (6) |
|
Date Dimension Role Playing |
|
|
345 | (1) |
|
|
345 | (2) |
|
Supertypes and Subtypes for Charges |
|
|
347 | (1) |
|
Electronic Medical Records |
|
|
348 | (3) |
|
Measure Type Dimension for Sparse Facts |
|
|
349 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
Facility/Equipment Inventory Utilization |
|
|
351 | (1) |
|
Dealing with Retroactive Changes |
|
|
351 | (1) |
|
|
352 | (1) |
15 Electronic Commerce |
|
353 | (22) |
|
|
353 | (4) |
|
Clickstream Data Challenges |
|
|
354 | (3) |
|
Clickstream Dimensional Models |
|
|
357 | (11) |
|
|
358 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
360 | (1) |
|
Clickstream Session Fact Table |
|
|
361 | (2) |
|
Clickstream Page Event Fact Table |
|
|
363 | (3) |
|
|
366 | (1) |
|
Aggregate Clickstream Fact Tables |
|
|
366 | (1) |
|
|
367 | (1) |
|
Integrating Clickstream into Web Retailer's Bus Matrix |
|
|
368 | (2) |
|
Profitability Across Channels Including Web |
|
|
370 | (3) |
|
|
373 | (2) |
16 Insurance |
|
375 | (28) |
|
|
376 | (3) |
|
|
377 | (1) |
|
|
378 | (1) |
|
|
379 | (6) |
|
|
380 | (1) |
|
Slowly Changing Dimensions |
|
|
380 | (1) |
|
Mini-Dimensions for Large or Rapidly Changing Dimensions |
|
|
381 | (1) |
|
Multivalued Dimension Attributes |
|
|
382 | (1) |
|
Numeric Attributes as Facts or Dimensions |
|
|
382 | (1) |
|
|
383 | (1) |
|
Low Cardinality Dimension Tables |
|
|
383 | (1) |
|
|
383 | (1) |
|
Policy Transaction Fact Table |
|
|
383 | (1) |
|
Heterogeneous Supertype and Subtype Products |
|
|
384 | (1) |
|
Complementary Policy Accumulating Snapshot |
|
|
384 | (1) |
|
Premium Periodic Snapshot |
|
|
385 | (3) |
|
|
386 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
Heterogeneous Supertypes and Subtypes Revisited |
|
|
387 | (1) |
|
Multivalued Dimensions Revisited |
|
|
388 | (1) |
|
More Insurance Case Study Background |
|
|
388 | (2) |
|
Updated Insurance Bus Matrix |
|
|
389 | (1) |
|
Detailed Implementation Bus Matrix |
|
|
390 | (1) |
|
|
390 | (2) |
|
Transaction Versus Profile Junk Dimensions |
|
|
392 | (1) |
|
Claim Accumulating Snapshot |
|
|
392 | (3) |
|
Accumulating Snapshot for Complex Workflows |
|
|
393 | (1) |
|
Timespan Accumulating Snapshot |
|
|
394 | (1) |
|
Periodic Instead of Accumulating Snapshot |
|
|
395 | (1) |
|
Policy/Claim Consolidated Periodic Snapshot |
|
|
395 | (1) |
|
|
396 | (1) |
|
Common Dimensional Modeling Mistakes to Avoid |
|
|
397 | (4) |
|
Mistake 10: Place Text Attributes in a Fact Table |
|
|
397 | (1) |
|
Mistake 9: Limit Verbose Descriptors to Save Space |
|
|
398 | (1) |
|
Mistake 8: Split Hierarchies into Multiple Dimensions |
|
|
398 | (1) |
|
Mistake 7: Ignore the Need to Track Dimension Changes |
|
|
398 | (1) |
|
Mistake 6: Solve All Performance Problems with More Hardware |
|
|
399 | (1) |
|
Mistake 5: Use Operational Keys to Join Dimensions and Facts |
|
|
399 | (1) |
|
Mistake 4: Neglect to Declare and Comply with the Fact Grain |
|
|
399 | (1) |
|
Mistake 3: Use a Report to Design the Dimensional Model |
|
|
400 | (1) |
|
Mistake 2: Expect Users to Query Normalized Atomic Data |
|
|
400 | (1) |
|
Mistake 1: Fail to Conform Facts and Dimensions |
|
|
400 | (1) |
|
|
401 | (2) |
17 Kimball DW/BI Lifecycle Overview |
|
403 | (26) |
|
|
404 | (2) |
|
|
405 | (1) |
|
Lifecycle Launch Activities |
|
|
406 | (10) |
|
Program/Project Planning and Management |
|
|
406 | (4) |
|
Business Requirements Definition |
|
|
410 | (6) |
|
Lifecycle Technology Track |
|
|
416 | (4) |
|
Technical Architecture Design |
|
|
416 | (2) |
|
Product Selection and Installation |
|
|
418 | (2) |
|
|
420 | (2) |
|
|
420 | (1) |
|
|
420 | (2) |
|
ETL Design and Development |
|
|
422 | (1) |
|
Lifecycle BI Applications Track |
|
|
422 | (2) |
|
BI Application Specification |
|
|
423 | (1) |
|
BI Application Development |
|
|
423 | (1) |
|
Lifecycle Wrap-up Activities |
|
|
424 | (2) |
|
|
424 | (1) |
|
|
425 | (1) |
|
|
426 | (1) |
|
|
427 | (2) |
18 Dimensional Modeling Process and Tasks |
|
429 | (14) |
|
Modeling Process Overview |
|
|
429 | (2) |
|
|
431 | (3) |
|
Identify Participants, Especially Business Representatives |
|
|
431 | (1) |
|
Review the Business Requirements |
|
|
432 | (1) |
|
|
432 | (1) |
|
Leverage a Data Profiling Tool |
|
|
433 | (1) |
|
Leverage or Establish Naming Conventions |
|
|
433 | (1) |
|
Coordinate Calendars and Facilities |
|
|
433 | (1) |
|
Design the Dimensional Model |
|
|
434 | (7) |
|
Reach Consensus on High-Level Bubble Chart |
|
|
435 | (1) |
|
Develop the Detailed Dimensional Model |
|
|
436 | (3) |
|
Review and Validate the Model |
|
|
439 | (2) |
|
Finalize the Design Documentation |
|
|
441 | (1) |
|
|
441 | (2) |
19 ETL Subsystems and Techniques |
|
443 | (54) |
|
Round Up the Requirements |
|
|
444 | (5) |
|
|
444 | (1) |
|
|
445 | (1) |
|
|
445 | (1) |
|
|
446 | (1) |
|
|
446 | (1) |
|
|
447 | (1) |
|
|
447 | (1) |
|
|
448 | (1) |
|
|
448 | (1) |
|
|
449 | (1) |
|
|
449 | (1) |
|
Extracting: Getting Data into the Data Warehouse |
|
|
450 | (5) |
|
Subsystem 1: Data Profiling |
|
|
450 | (1) |
|
Subsystem 2: Change Data Capture System |
|
|
451 | (2) |
|
Subsystem 3: Extract System |
|
|
453 | (2) |
|
Cleaning and Conforming Data |
|
|
455 | (8) |
|
Improving Data Quality Culture and Processes |
|
|
455 | (1) |
|
Subsystem 4: Data Cleansing System |
|
|
456 | (2) |
|
Subsystem 5: Error Event Schema |
|
|
458 | (2) |
|
Subsystem 6: Audit Dimension Assembler |
|
|
460 | (1) |
|
Subsystem 7: Deduplication System |
|
|
460 | (1) |
|
Subsystem 8: Conforming System |
|
|
461 | (2) |
|
Delivering: Prepare for Presentation |
|
|
463 | (20) |
|
Subsystem 9: Slowly Changing Dimension Manager |
|
|
464 | (5) |
|
Subsystem 10: Surrogate Key Generator |
|
|
469 | (1) |
|
Subsystem 11: Hierarchy Manager |
|
|
470 | (1) |
|
Subsystem 12: Special Dimensions Manager |
|
|
470 | (3) |
|
Subsystem 13: Fact Table Builders |
|
|
473 | (2) |
|
Subsystem 14: Surrogate Key Pipeline |
|
|
475 | (2) |
|
Subsystem 15: Multivalued Dimension Bridge Table Builder |
|
|
477 | (1) |
|
Subsystem 16: Late Arriving Data Handler |
|
|
478 | (1) |
|
Subsystem 17: Dimension Manager System |
|
|
479 | (1) |
|
Subsystem 18: Fact Provider System |
|
|
480 | (1) |
|
Subsystem 19: Aggregate Builder |
|
|
481 | (1) |
|
Subsystem 20: OLAP Cube Builder |
|
|
481 | (1) |
|
Subsystem 21: Data Propagation Manager |
|
|
482 | (1) |
|
Managing the ETL Environment |
|
|
483 | (13) |
|
Subsystem 22: Job Scheduler |
|
|
483 | (2) |
|
Subsystem 23: Backup System |
|
|
485 | (1) |
|
Subsystem 24: Recovery and Restart System |
|
|
486 | (2) |
|
Subsystem 25: Version Control System 8 |
|
|
488 | (1) |
|
Subsystem 26: Version Migration System |
|
|
488 | (1) |
|
Subsystem 27: Workflow Monitor |
|
|
489 | (1) |
|
Subsystem 28: Sorting System |
|
|
490 | (1) |
|
Subsystem 29: Lineage and Dependency Analyzer |
|
|
490 | (1) |
|
Subsystem 30: Problem Escalation System |
|
|
491 | (1) |
|
Subsystem 31: Parallelizing/Pipelining System |
|
|
492 | (1) |
|
Subsystem 32: Security System |
|
|
492 | (1) |
|
Subsystem 33: Compliance Manager |
|
|
493 | (2) |
|
Subsystem 34: Metadata Repository Manager |
|
|
495 | (1) |
|
|
496 | (1) |
20 ETL System Design and Development Process and Tasks |
|
497 | (30) |
|
|
497 | (1) |
|
|
498 | (5) |
|
Step 1: Draw the High-Level Plan |
|
|
498 | (1) |
|
Step 2: Choose an ETL Tool |
|
|
499 | (1) |
|
Step 3: Develop Default Strategies |
|
|
500 | (1) |
|
Step 4: Drill Down by Target Table |
|
|
500 | (2) |
|
Develop the ETL Specification Document |
|
|
502 | (1) |
|
Develop One-Time Historic Load Processing |
|
|
503 | (9) |
|
Step 5: Populate Dimension Tables with Historic Data |
|
|
503 | (5) |
|
Step 6: Perform the Fact Table Historic Load |
|
|
508 | (4) |
|
Develop Incremental ETL Processing |
|
|
512 | (8) |
|
Step 7: Dimension Table Incremental Processing |
|
|
512 | (3) |
|
Step 8: Fact Table Incremental Processing |
|
|
515 | (4) |
|
Step 9: Aggregate Table and OLAP Loads |
|
|
519 | (1) |
|
Step 10: ETL System Operation and Automation |
|
|
519 | (1) |
|
|
520 | (6) |
|
|
521 | (1) |
|
Real-Time Architecture Trade-Offs |
|
|
522 | (2) |
|
Real-Time Partitions in the Presentation Server |
|
|
524 | (2) |
|
|
526 | (1) |
21 Big Data Analytics |
|
527 | (16) |
|
|
527 | (4) |
|
Extended RDBMS Architecture |
|
|
529 | (1) |
|
MapReduce/Hadoop Architecture |
|
|
530 | (1) |
|
Comparison of Big Data Architectures |
|
|
530 | (1) |
|
Recommended Best Practices for Big Data |
|
|
531 | (11) |
|
Management Best Practices for Big Data |
|
|
531 | (2) |
|
Architecture Best Practices for Big Data |
|
|
533 | (5) |
|
Data Modeling Best Practices for Big Data |
|
|
538 | (3) |
|
Data Governance Best Practices for Big Data |
|
|
541 | (1) |
|
|
542 | (1) |
Index |
|
543 | |