Foreword |
|
xxi | |
Preface |
|
xxiii | |
Part 1 OVERVIEW AND CONCEPTS |
|
|
The Compelling Need for Data Warehousing |
|
|
1 | (18) |
|
|
1 | (1) |
|
Escalating Need for Strategic Information |
|
|
2 | (5) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (2) |
|
Failures of Past Decision-Support Systems |
|
|
7 | (2) |
|
History of Decision-Support Systems |
|
|
8 | (1) |
|
Inability to Provide Information |
|
|
9 | (1) |
|
Operational Versus Decision-Support Systems |
|
|
9 | (3) |
|
Making the Wheels of Business Turn |
|
|
10 | (1) |
|
Watching the Wheels of Business Turn |
|
|
10 | (1) |
|
Different Scope, Different Purposes |
|
|
10 | (2) |
|
Data Warehousing-The Only Viable Solution |
|
|
12 | (1) |
|
A New Type of System Environment |
|
|
12 | (1) |
|
Processing Requirements in the New Environment |
|
|
12 | (1) |
|
Business Intelligence at the Data Warehouse |
|
|
12 | (1) |
|
|
13 | (2) |
|
A Simple Concept for Information Delivery |
|
|
14 | (1) |
|
An Environment, Not a Product |
|
|
14 | (1) |
|
A Blend of Many Technologies |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
16 | (3) |
|
Data Warehouse: The Building Blocks |
|
|
19 | (20) |
|
|
19 | (1) |
|
|
20 | (4) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
Data Warehouses and Data Marts |
|
|
24 | (4) |
|
|
25 | (1) |
|
Top-Down Versus Bottom-Up Approach |
|
|
26 | (1) |
|
|
27 | (1) |
|
Overview of the Components |
|
|
28 | (7) |
|
|
28 | (3) |
|
|
31 | (2) |
|
|
33 | (1) |
|
Information Delivery Component |
|
|
34 | (1) |
|
|
35 | (1) |
|
Management and Control Component |
|
|
35 | (1) |
|
Metadata in the Data Warehouse |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (2) |
|
Trends in Data Warehousing |
|
|
39 | (24) |
|
|
39 | (1) |
|
Continued Growth in Data Warehousing |
|
|
40 | (3) |
|
Data Warehousing is Becoming Mainstream |
|
|
40 | (1) |
|
|
41 | (1) |
|
Vendor Solutions and Products |
|
|
42 | (1) |
|
|
43 | (13) |
|
|
44 | (2) |
|
|
46 | (2) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
Multidimensional Analysis |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
56 | (2) |
|
|
57 | (1) |
|
|
57 | (1) |
|
Web-Enabled Data Warehouse |
|
|
58 | (3) |
|
|
59 | (1) |
|
|
59 | (1) |
|
The Web-Enabled Configuration |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
Part 2 PLANNING AND REQUIREMENTS |
|
|
Planning and Project Management |
|
|
63 | (26) |
|
|
63 | (1) |
|
Planning Your Data Warehouse |
|
|
64 | (5) |
|
|
64 | (2) |
|
Business Requirements, Not Technology |
|
|
66 | (1) |
|
|
67 | (1) |
|
Justifying Your Data Warehouse |
|
|
67 | (1) |
|
|
68 | (1) |
|
The Data Warehouse Project |
|
|
69 | (5) |
|
|
70 | (1) |
|
|
71 | (1) |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
74 | (6) |
|
Organizing the Project Team |
|
|
75 | (1) |
|
Roles and Responsibilities |
|
|
75 | (2) |
|
Skills and Experience Levels |
|
|
77 | (1) |
|
|
78 | (2) |
|
Project Management Considerations |
|
|
80 | (6) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
Anatomy of a Successful Project |
|
|
83 | (1) |
|
Adopt a Practical Approach |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
87 | (2) |
|
Defining the Business Requirements |
|
|
89 | (20) |
|
|
89 | (1) |
|
|
90 | (3) |
|
Usage of Information Unpredictable |
|
|
90 | (1) |
|
Dimensional Nature of Business Data |
|
|
90 | (2) |
|
Examples of Business Dimensions |
|
|
92 | (1) |
|
Information Packages-A new Concept |
|
|
93 | (4) |
|
Requirements Not Fully Determinate |
|
|
93 | (2) |
|
|
95 | (1) |
|
Dimension Hierarchies/Categories |
|
|
95 | (1) |
|
Key Business Metrics or Facts |
|
|
96 | (1) |
|
Requirements Gathering Methods |
|
|
97 | (7) |
|
|
99 | (3) |
|
Adapting the JAD Methodology |
|
|
102 | (1) |
|
Review of Existing Documentation |
|
|
103 | (1) |
|
Requirements Definition: Scope and Content |
|
|
104 | (2) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
Information Package Diagrams |
|
|
106 | (1) |
|
Requirements Definition Document Outline |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
107 | (2) |
|
Requirements as the Driving Force for Data Warehousing |
|
|
109 | (18) |
|
|
109 | (1) |
|
|
110 | (3) |
|
Structure for Business Dimensions |
|
|
112 | (1) |
|
Structure for Key Measurements |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
113 | (6) |
|
Composition of the Components |
|
|
114 | (1) |
|
|
115 | (3) |
|
|
118 | (1) |
|
Data Storage Specifications |
|
|
119 | (2) |
|
|
120 | (1) |
|
|
120 | (1) |
|
Information Delivery Strategy |
|
|
121 | (3) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
Decision Support Applications |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (2) |
Part 3 ARCHITECTURE AND INFRASTRUCTURE |
|
|
The Architectural Components |
|
|
127 | (18) |
|
|
127 | (1) |
|
Understanding Data Warehouse Architecture |
|
|
127 | (2) |
|
Architecture: Definitions |
|
|
127 | (1) |
|
Architecture in Three Major Areas |
|
|
128 | (1) |
|
Distinguishing Characteristics |
|
|
129 | (3) |
|
Different Objectives and Scope |
|
|
130 | (1) |
|
|
130 | (1) |
|
Complex Analysis and Quick Response |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (2) |
|
Architecture Supporting Flow of Data |
|
|
132 | (1) |
|
The Management and Control Module |
|
|
133 | (1) |
|
|
134 | (8) |
|
|
135 | (3) |
|
|
138 | (2) |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
142 | (1) |
|
|
143 | (2) |
|
Infrasturcture as the Foundation for Data Warehousing |
|
|
145 | (28) |
|
|
145 | (1) |
|
Infrastructure Supporting Architecture |
|
|
145 | (3) |
|
Operational Infrastructure |
|
|
147 | (1) |
|
|
147 | (1) |
|
Hardware and Operating Systems |
|
|
148 | (16) |
|
|
150 | (8) |
|
|
158 | (6) |
|
|
164 | (3) |
|
Parallel Processing Options |
|
|
164 | (2) |
|
|
166 | (1) |
|
|
167 | (3) |
|
Architecture First, Then Tools |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
170 | (1) |
|
Online Analytical Processing (OLAP) |
|
|
170 | (1) |
|
|
170 | (1) |
|
Middleware and Connectivity |
|
|
170 | (1) |
|
Data Warehouse Management |
|
|
170 | (1) |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
171 | (2) |
|
The Significant Role of Metadata |
|
|
173 | (30) |
|
|
173 | (1) |
|
Why Metadata is Important |
|
|
173 | (10) |
|
A Critical Need in the Data Warehouse |
|
|
175 | (2) |
|
Why Metadata is Vital for End-Users |
|
|
177 | (2) |
|
Why Metadata is Essential for IT |
|
|
179 | (2) |
|
Automation of Warehousing Tasks |
|
|
181 | (2) |
|
Establishing the Context of Information |
|
|
183 | (1) |
|
Metadata Types by Functional Areas |
|
|
183 | (4) |
|
|
184 | (2) |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
187 | (3) |
|
|
188 | (1) |
|
Examples of Business Metadata |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
190 | (3) |
|
|
190 | (1) |
|
Examples of Technical Metadata |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
192 | (1) |
|
|
193 | (7) |
|
|
193 | (1) |
|
|
194 | (2) |
|
Challenges for Metadata Management |
|
|
196 | (1) |
|
|
196 | (2) |
|
Metadata Integration and Standards |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (2) |
Part 4 DATA DESIGN AND DATA PREPARATION |
|
|
Principles of Dimensional Modeling |
|
|
203 | (22) |
|
|
203 | (1) |
|
From Requirements to Data Design |
|
|
203 | (7) |
|
|
204 | (1) |
|
Dimensional Modeling Basics |
|
|
204 | (5) |
|
E-R Modeling Versus Dimensional Modeling |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (8) |
|
Review of a Simple STAR Schema |
|
|
210 | (2) |
|
|
212 | (2) |
|
|
214 | (2) |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
218 | (2) |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
219 | (1) |
|
Advantages of the STAR Schema |
|
|
220 | (3) |
|
Easy for Users to Understand |
|
|
220 | (1) |
|
|
221 | (1) |
|
Most Suitable for Query Processing |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
224 | (1) |
|
Dimensional Modeling: Advanced Topics |
|
|
225 | (32) |
|
|
225 | (1) |
|
Updates to the Dimension Tables |
|
|
226 | (5) |
|
Slowly Changing Dimensions |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
228 | (2) |
|
|
230 | (1) |
|
|
231 | (4) |
|
|
231 | (2) |
|
Rapidly Changing Dimensions |
|
|
233 | (2) |
|
|
235 | (1) |
|
|
235 | (4) |
|
|
235 | (3) |
|
Advantages and Disadvantages |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (10) |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
243 | (4) |
|
|
247 | (2) |
|
|
249 | (6) |
|
Snapshot and Transaction Tables |
|
|
250 | (1) |
|
|
251 | (1) |
|
Supporting Enterprise Value Chain or Value Circle |
|
|
251 | (2) |
|
|
253 | (1) |
|
|
254 | (1) |
|
Summary of Family of STARS |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
256 | (1) |
|
Data Extraction, Transformation, and Loading |
|
|
257 | (34) |
|
|
257 | (1) |
|
|
258 | (4) |
|
Most Important and Most Challenging |
|
|
259 | (1) |
|
Time-consuming and Arduous |
|
|
260 | (1) |
|
ETL Requirements and Steps |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
262 | (9) |
|
|
263 | (1) |
|
Data Extraction Techniques |
|
|
263 | (7) |
|
Evaluation of the Techniques |
|
|
270 | (1) |
|
|
271 | (8) |
|
Data Transformation: Basic Tasks |
|
|
272 | (1) |
|
Major Transformation Types |
|
|
273 | (2) |
|
Data Integration and Consolidation |
|
|
275 | (2) |
|
Transformation for Dimension Attributes |
|
|
277 | (1) |
|
How to Implement Transformation |
|
|
277 | (2) |
|
|
279 | (6) |
|
Applying Data: Techniques and Processes |
|
|
280 | (2) |
|
Data Refresh Versus Updata |
|
|
282 | (1) |
|
Procedure for Dimension Tables |
|
|
283 | (1) |
|
Fact Tables: History and Incremental Loads |
|
|
284 | (1) |
|
|
285 | (3) |
|
|
285 | (1) |
|
Reemphasizing ETL Metadata |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
288 | (1) |
|
|
289 | (2) |
|
Data Quality: A key to Success |
|
|
291 | (24) |
|
|
291 | (1) |
|
Why is Data Quality Critical? |
|
|
292 | (7) |
|
|
292 | (3) |
|
Benefits of Improved Data Quality |
|
|
295 | (1) |
|
Types of Data Quality Problems |
|
|
296 | (3) |
|
|
299 | (4) |
|
Sources of Data Pollution |
|
|
299 | (2) |
|
Validation of Names and Addresses |
|
|
301 | (1) |
|
Costs of Poor Data Quality |
|
|
302 | (1) |
|
|
303 | (1) |
|
Categories of Data Cleansing Tools |
|
|
303 | (1) |
|
|
303 | (1) |
|
|
303 | (1) |
|
The DBMS for Quality Control |
|
|
304 | (1) |
|
|
304 | (7) |
|
|
305 | (2) |
|
Who Should be Responsible? |
|
|
307 | (2) |
|
|
309 | (2) |
|
Practical Tips on Data Quality |
|
|
311 | (1) |
|
|
311 | (1) |
|
|
312 | (1) |
|
|
312 | (3) |
Part 5 INFORMATION ACCESS AND DELIVERY |
|
|
Matching Information to the Classes of Users |
|
|
315 | (28) |
|
|
315 | (1) |
|
Information from the Data Warehouse |
|
|
316 | (7) |
|
Data Warehouse Versus Operational Systems |
|
|
316 | (2) |
|
|
318 | (3) |
|
User-Information Interface |
|
|
321 | (2) |
|
|
323 | (1) |
|
Who Will Use the Information? |
|
|
323 | (6) |
|
|
323 | (3) |
|
|
326 | (3) |
|
How to Provide Information |
|
|
329 | (1) |
|
|
329 | (6) |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
333 | (1) |
|
|
334 | (1) |
|
Information Delivery Tools |
|
|
335 | (6) |
|
|
335 | (1) |
|
Methodology for Tool Selection |
|
|
335 | (3) |
|
|
338 | (2) |
|
Information Delivery Framework |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
341 | (2) |
|
OLAP in the Data Warehouse |
|
|
343 | (34) |
|
|
343 | (1) |
|
Demand for Online Analytical Processing |
|
|
344 | (9) |
|
Need for Multidimensional Analysis |
|
|
344 | (1) |
|
Fast Access and Powerful Calculations |
|
|
345 | (2) |
|
Limitations of Other Analysis Methods |
|
|
347 | (2) |
|
|
349 | (1) |
|
OLAP Definitions and Rules |
|
|
349 | (3) |
|
|
352 | (1) |
|
Major Features and Functions |
|
|
353 | (10) |
|
|
353 | (1) |
|
|
353 | (4) |
|
|
357 | (3) |
|
|
360 | (2) |
|
Slice-and-Dice or Rotation |
|
|
362 | (1) |
|
|
363 | (1) |
|
|
363 | (5) |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
366 | (1) |
|
|
367 | (1) |
|
OLAP Implementation Considerations |
|
|
368 | (6) |
|
Data Design and Preparation |
|
|
368 | (2) |
|
Administration and Performance |
|
|
370 | (2) |
|
|
372 | (1) |
|
|
373 | (1) |
|
|
374 | (1) |
|
|
374 | (1) |
|
|
374 | (1) |
|
|
375 | (2) |
|
Data Warehousing and the Web |
|
|
377 | (22) |
|
|
377 | (1) |
|
Web-Enabled Data Warehouse |
|
|
378 | (5) |
|
|
378 | (2) |
|
Convergence of Technologies |
|
|
380 | (1) |
|
Adapting the Data Warehouse for the Web |
|
|
381 | (1) |
|
|
382 | (1) |
|
Web-Based Information Delivery |
|
|
383 | (6) |
|
|
383 | (2) |
|
New Information Strategies |
|
|
385 | (2) |
|
Browser Technology for the Data Warehouse |
|
|
387 | (2) |
|
|
389 | (1) |
|
|
389 | (2) |
|
|
389 | (1) |
|
|
390 | (1) |
|
|
390 | (1) |
|
Building a Web-Enabled Data Warehouse |
|
|
391 | (5) |
|
Nature of the Data Webhouse |
|
|
391 | (2) |
|
Implementation Considerations |
|
|
393 | (1) |
|
Putting the Pieces Together |
|
|
394 | (1) |
|
|
394 | (2) |
|
|
396 | (1) |
|
|
396 | (1) |
|
|
396 | (3) |
|
|
399 | (30) |
|
|
399 | (1) |
|
|
400 | (8) |
|
|
401 | (1) |
|
The Knowledge Discovery Process |
|
|
402 | (2) |
|
|
404 | (2) |
|
Data Mining and the Data Warehouse |
|
|
406 | (2) |
|
Major Data Mining Techniques |
|
|
408 | (14) |
|
|
409 | (2) |
|
|
411 | (2) |
|
|
413 | (2) |
|
|
415 | (2) |
|
|
417 | (1) |
|
|
418 | (1) |
|
|
419 | (3) |
|
|
422 | (4) |
|
|
423 | (1) |
|
Applications in Retail Industry |
|
|
424 | (1) |
|
Applications in Telecommunications Industry |
|
|
425 | (1) |
|
Applications in Banking and Finance |
|
|
426 | (1) |
|
|
426 | (1) |
|
|
426 | (1) |
|
|
427 | (2) |
Part 6 IMPLEMENTATION AND MAINTENANCE |
|
|
The Physical Design Process |
|
|
429 | (26) |
|
|
429 | (1) |
|
|
430 | (3) |
|
|
430 | (1) |
|
|
431 | (1) |
|
Determine the Data Partitioning Scheme |
|
|
431 | (1) |
|
Establish Clustering Options |
|
|
432 | (1) |
|
Prepare an Indexing Strategy |
|
|
432 | (1) |
|
Assign Storage Structures |
|
|
432 | (1) |
|
|
433 | (1) |
|
Physical Design Considerations |
|
|
433 | (5) |
|
Physical Design Objectives |
|
|
433 | (1) |
|
From Logical Model to Physical Model |
|
|
434 | (1) |
|
Physical Model Components |
|
|
435 | (1) |
|
Significance of Standards |
|
|
436 | (2) |
|
|
438 | (5) |
|
Storage Area Data Structures |
|
|
439 | (1) |
|
|
440 | (2) |
|
|
442 | (1) |
|
|
442 | (1) |
|
Indexing the Data Warehouse |
|
|
443 | (6) |
|
|
443 | (2) |
|
|
445 | (1) |
|
|
446 | (2) |
|
|
448 | (1) |
|
|
448 | (1) |
|
Indexing the Dimension Tables |
|
|
449 | (1) |
|
Performance Enhancement Techniques |
|
|
449 | (3) |
|
|
449 | (1) |
|
|
450 | (1) |
|
|
450 | (1) |
|
|
451 | (1) |
|
Referential Integrity Checks |
|
|
451 | (1) |
|
Initialization Parameters |
|
|
451 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
|
452 | (1) |
|
|
453 | (2) |
|
Data Warehouse Deployment |
|
|
455 | (22) |
|
|
455 | (1) |
|
Major Deployment Activities |
|
|
456 | (6) |
|
|
456 | (1) |
|
|
457 | (1) |
|
|
458 | (1) |
|
Complete Initial User Training |
|
|
459 | (1) |
|
Institute Initial User Support |
|
|
460 | (1) |
|
|
460 | (2) |
|
Considerations for a Pilot |
|
|
462 | (5) |
|
When Is a Pilot Data Mart Useful? |
|
|
462 | (1) |
|
|
463 | (2) |
|
|
465 | (1) |
|
Expanding and Integrating the Pilot |
|
|
466 | (1) |
|
|
467 | (3) |
|
|
467 | (1) |
|
|
468 | (1) |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
470 | (3) |
|
Why Back Up the Data Warehouse? |
|
|
470 | (1) |
|
|
471 | (1) |
|
Setting Up a Practical Schedule |
|
|
472 | (1) |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
474 | (1) |
|
|
474 | (3) |
|
|
477 | (16) |
|
|
477 | (1) |
|
Monitoring the Data Warehouse |
|
|
478 | (3) |
|
|
478 | (2) |
|
Using Statistics for Growth Planning |
|
|
480 | (1) |
|
Using Statistics for Fine-Tuning |
|
|
480 | (1) |
|
Publishing Trends for Users |
|
|
481 | (1) |
|
User Training and Support |
|
|
481 | (6) |
|
|
482 | (1) |
|
Preparing the Training Program |
|
|
482 | (2) |
|
Delivering the Training Program |
|
|
484 | (1) |
|
|
485 | (2) |
|
Managing the Data Warehouse |
|
|
487 | (3) |
|
|
487 | (1) |
|
|
488 | (1) |
|
|
488 | (1) |
|
|
489 | (1) |
|
|
489 | (1) |
|
Information Delivery Enhancements |
|
|
489 | (1) |
|
|
490 | (1) |
|
|
490 | (1) |
|
|
491 | (1) |
|
|
491 | (2) |
Appendix A. Project Life Cycle Steps and Checklists |
|
493 | (4) |
Appendix B. Critical Factors for Success |
|
497 | (2) |
Appendix C. Guidelines for Evaluating Vendor Solutions |
|
499 | (2) |
References |
|
501 | (2) |
Glossary |
|
503 | (8) |
Index |
|
511 | |