Preface |
|
xxv | |
|
PART 1 OVERVIEW AND CONCEPTS |
|
|
1 | (70) |
|
1 The Compelling Need for Data Warehousing |
|
|
3 | (20) |
|
|
3 | (1) |
|
Escalating Need for Strategic Information |
|
|
4 | (5) |
|
|
6 | (1) |
|
|
6 | (2) |
|
|
8 | (1) |
|
Failures of Past Decision-Support Systems |
|
|
9 | (2) |
|
History of Decision-Support Systems |
|
|
10 | (1) |
|
Inability to Provide Information |
|
|
10 | (1) |
|
Operational Versus Decision-Support Systems |
|
|
11 | (2) |
|
Making the Wheels of Business Turn |
|
|
12 | (1) |
|
Watching the Wheels of Business Turn |
|
|
12 | (1) |
|
Different Scope, Different Purposes |
|
|
12 | (1) |
|
Data Warehousing---The Only Viable Solution |
|
|
13 | (2) |
|
A New Type of System Environment |
|
|
13 | (1) |
|
Processing Requirements in the New Environment |
|
|
14 | (1) |
|
Strategic Information from the Data Warehouse |
|
|
14 | (1) |
|
|
15 | (2) |
|
A Simple Concept for Information Delivery |
|
|
15 | (1) |
|
An Environment, Not a Product |
|
|
15 | (1) |
|
A Blend of Many Technologies |
|
|
16 | (1) |
|
The Data Warehousing Movement |
|
|
17 | (1) |
|
Data Warehousing Milestones |
|
|
17 | (1) |
|
|
18 | (1) |
|
Evolution of Business Intelligence |
|
|
18 | (2) |
|
|
19 | (1) |
|
BI: Data Warehousing and Analytics |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
|
2 Data Warehouse: The Building Blocks |
|
|
23 | (22) |
|
|
23 | (1) |
|
|
24 | (5) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
Data Warehouses and Data Marts |
|
|
29 | (3) |
|
|
29 | (1) |
|
Top-Down Versus Bottom-Up Approach |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
32 | (2) |
|
Centralized Data Warehouse |
|
|
32 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
Overview of the Components |
|
|
34 | (7) |
|
|
34 | (3) |
|
|
37 | (2) |
|
|
39 | (1) |
|
Information Delivery Component |
|
|
40 | (1) |
|
|
41 | (1) |
|
Management and Control Component |
|
|
41 | (1) |
|
Metadata in the Data Warehouse |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (2) |
|
3 Trends in Data Warehousing |
|
|
45 | (26) |
|
|
45 | (1) |
|
Continued Growth in Data Warehousing |
|
|
46 | (4) |
|
Data Warehousing has Become Mainstream |
|
|
46 | (1) |
|
|
47 | (1) |
|
Vendor Solutions and Products |
|
|
48 | (2) |
|
|
50 | (14) |
|
Real-Time Data Warehousing |
|
|
50 | (1) |
|
|
50 | (2) |
|
|
52 | (2) |
|
|
54 | (2) |
|
Data Warehouse Appliances |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (2) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (2) |
|
|
65 | (1) |
|
|
65 | (1) |
|
Web-Enabled Data Warehouse |
|
|
66 | (3) |
|
|
67 | (1) |
|
|
67 | (2) |
|
The Web-Enabled Configuration |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
PART 2 PLANNING AND REQUIREMENTS |
|
|
71 | (68) |
|
4 Planning and Project Management |
|
|
73 | (26) |
|
|
73 | (1) |
|
Planning Your Data Warehouse |
|
|
74 | (5) |
|
|
74 | (2) |
|
Business Requirements, Not Technology |
|
|
76 | (1) |
|
|
77 | (1) |
|
Justifying Your Data Warehouse |
|
|
77 | (1) |
|
|
78 | (1) |
|
The Data Warehouse Project |
|
|
79 | (4) |
|
|
79 | (2) |
|
|
81 | (1) |
|
|
81 | (2) |
|
|
83 | (2) |
|
Adopting Agile Development |
|
|
84 | (1) |
|
|
85 | (5) |
|
Organizing the Project Team |
|
|
85 | (1) |
|
Roles and Responsibilities |
|
|
86 | (1) |
|
Skills and Experience Levels |
|
|
87 | (1) |
|
|
88 | (2) |
|
Project Management Considerations |
|
|
90 | (6) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
Anatomy of a Successful Project |
|
|
93 | (1) |
|
Adopt a Practical Approach |
|
|
94 | (2) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (2) |
|
5 Defining the Business Requirements |
|
|
99 | (22) |
|
|
99 | (1) |
|
|
100 | (3) |
|
Usage of Information Unpredictable |
|
|
100 | (1) |
|
Dimensional Nature of Business Data |
|
|
101 | (1) |
|
Examples of Business Dimensions |
|
|
102 | (1) |
|
Infromation Packages---A Useful Concept |
|
|
103 | (6) |
|
Requirements Not Fully Determinate |
|
|
104 | (1) |
|
|
105 | (1) |
|
Dimension Hierarchies and Categories |
|
|
106 | (1) |
|
Key Business Metrics or Facts |
|
|
107 | (2) |
|
Requirements Gathering Methods |
|
|
109 | (7) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
111 | (2) |
|
Adapting the JAD Methodology |
|
|
113 | (2) |
|
|
115 | (1) |
|
Review of Existing Documentation |
|
|
115 | (1) |
|
Requirements Definition: Scope and Content |
|
|
116 | (3) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
Information Package Diagrams |
|
|
118 | (1) |
|
Requirements Definition Document Outline |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
119 | (1) |
|
|
120 | (1) |
|
6 Requirements as the Driving Force for Data Warehousing |
|
|
121 | (18) |
|
|
121 | (1) |
|
|
122 | (3) |
|
Structure for Business Dimensions |
|
|
123 | (1) |
|
Structure for Key Measurements |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
125 | (6) |
|
Composition of the Components |
|
|
126 | (1) |
|
|
127 | (2) |
|
|
129 | (2) |
|
Data Storage Specifications |
|
|
131 | (2) |
|
|
132 | (1) |
|
|
132 | (1) |
|
Information Delivery Strategy |
|
|
133 | (3) |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
Real Time Information Delivery |
|
|
135 | (1) |
|
Decision Support Applications |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (2) |
|
PART 3 ARCHITECTURE AND INFRASTRUCTURE |
|
|
139 | (84) |
|
7 Architectural Components |
|
|
141 | (22) |
|
|
141 | (1) |
|
Understanding Data Warehouse Architecture |
|
|
141 | (2) |
|
Architecture: Definitions |
|
|
142 | (1) |
|
Architecture in Three Major Areas |
|
|
142 | (1) |
|
Distinguishing Characteristics |
|
|
143 | (3) |
|
Different Objectives and Scope |
|
|
144 | (1) |
|
|
144 | (1) |
|
Complex Analysis and Quick Response |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
146 | (2) |
|
Architecture Supporting Flow of Data |
|
|
146 | (1) |
|
The Management and Control Module |
|
|
147 | (1) |
|
|
148 | (8) |
|
|
149 | (3) |
|
|
152 | (2) |
|
|
154 | (2) |
|
|
156 | (4) |
|
Centralized Corporate Data Warehouse |
|
|
156 | (1) |
|
|
156 | (3) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
161 | (2) |
|
8 Infrastructure as the Foundation for Data Warehousing |
|
|
163 | (30) |
|
|
163 | (1) |
|
Infrastructure Supporting Architecture |
|
|
164 | (2) |
|
Operational Infrastructure |
|
|
165 | (1) |
|
|
165 | (1) |
|
Hardware and Operating Systems |
|
|
166 | (15) |
|
|
167 | (1) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
168 | (9) |
|
|
177 | (4) |
|
|
181 | (3) |
|
Parallel Processing Options |
|
|
182 | (2) |
|
|
184 | (1) |
|
|
184 | (4) |
|
Architecture First, Then Tools |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
|
187 | (1) |
|
Online Analytical Processing (OLAP) |
|
|
188 | (1) |
|
|
188 | (1) |
|
Middleware and Connectivity |
|
|
188 | (1) |
|
Data Warehouse Administration |
|
|
188 | (1) |
|
Data Warehouse Appliances |
|
|
188 | (3) |
|
Evolution of DW Appliances |
|
|
189 | (1) |
|
Benefits of DW Appliances |
|
|
190 | (1) |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
9 The Significant Role of Metadata |
|
|
193 | (30) |
|
|
193 | (1) |
|
Why Metadata is Important |
|
|
193 | (10) |
|
A Critical Need in the Data Warehouse |
|
|
195 | (3) |
|
Why Metadata Is Vital For End-Users |
|
|
198 | (1) |
|
Why Metadata Is Essential for IT |
|
|
199 | (1) |
|
Automation of Warehousing Tasks |
|
|
200 | (2) |
|
Establishing the Context of Information |
|
|
202 | (1) |
|
Metadata Types by Functional Areas |
|
|
203 | (4) |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
207 | (1) |
|
Examples of Business Metadata |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
209 | (3) |
|
|
210 | (1) |
|
Examples of Technical Metadata |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
211 | (1) |
|
|
212 | (7) |
|
|
212 | (2) |
|
|
214 | (1) |
|
Challenges for Metadata Management |
|
|
215 | (1) |
|
|
215 | (2) |
|
Metadata Integration and Standards |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
220 | (3) |
|
PART 4 DATA DESIGN AND DATA PREPARATION |
|
|
223 | (116) |
|
10 Principles of Dimensional Modeling |
|
|
225 | (24) |
|
|
225 | (1) |
|
From Requirements to Data Design |
|
|
225 | (7) |
|
|
226 | (1) |
|
Dimensional Modeling Basics |
|
|
226 | (4) |
|
E-R Modeling Versus Dimensional Modeling |
|
|
230 | (2) |
|
|
232 | (1) |
|
|
232 | (7) |
|
Review of a Simple Star Schema |
|
|
232 | (2) |
|
|
234 | (2) |
|
|
236 | (2) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (2) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
Advantages of the Star Schema |
|
|
241 | (3) |
|
Easy for Users to Understand |
|
|
241 | (1) |
|
|
242 | (1) |
|
Most Suitable for Query Processing |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
244 | (2) |
|
|
244 | (1) |
|
|
244 | (1) |
|
|
244 | (1) |
|
|
244 | (2) |
|
|
246 | (1) |
|
|
247 | (1) |
|
|
247 | (2) |
|
11 Dimensional Modeling: Advanced Topics |
|
|
249 | (32) |
|
|
249 | (1) |
|
Updates to the Dimension Tables |
|
|
250 | (5) |
|
Slowly Changing Dimensions |
|
|
250 | (1) |
|
Type 1 Changes: Correction of Errors |
|
|
251 | (1) |
|
Type 2 Changes: Preservation of History |
|
|
252 | (1) |
|
Type 3 Changes: Tentative Soft Revisions |
|
|
253 | (2) |
|
|
255 | (4) |
|
|
255 | (1) |
|
Rapidly Changing Dimensions |
|
|
256 | (2) |
|
|
258 | (1) |
|
|
259 | (3) |
|
|
259 | (1) |
|
Advantages and Disadvantages |
|
|
260 | (2) |
|
|
262 | (1) |
|
|
262 | (10) |
|
|
264 | (2) |
|
|
266 | (1) |
|
|
266 | (5) |
|
|
271 | (1) |
|
|
272 | (5) |
|
Snapshot and Transaction Tables |
|
|
273 | (1) |
|
|
274 | (1) |
|
Supporting Enterprise Value Chain or Value Circle |
|
|
274 | (1) |
|
|
275 | (1) |
|
|
276 | (1) |
|
Summary of Family of STARS |
|
|
277 | (1) |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
278 | (3) |
|
12 Data Extraction, Transformation, and Loading |
|
|
281 | (34) |
|
|
281 | (1) |
|
|
282 | (2) |
|
Most Important and Most Challenging |
|
|
282 | (1) |
|
Time Consuming and Arduous |
|
|
283 | (1) |
|
Etl Requirements and Steps |
|
|
284 | (2) |
|
|
285 | (1) |
|
|
286 | (9) |
|
|
287 | (1) |
|
Data Extraction Techniques |
|
|
287 | (7) |
|
Evaluation of the Techniques |
|
|
294 | (1) |
|
|
295 | (7) |
|
Data Transformation: Basic Tasks |
|
|
296 | (1) |
|
Major Transformation Types |
|
|
297 | (2) |
|
Data Integration and Consolidation |
|
|
299 | (2) |
|
Transformation for Dimension Attributes |
|
|
301 | (1) |
|
How to Implement Transformation |
|
|
301 | (1) |
|
|
302 | (6) |
|
Applying Data: Techniques and Processes |
|
|
303 | (3) |
|
Data Refresh Versus Update |
|
|
306 | (1) |
|
Procedure for Dimension Tables |
|
|
306 | (1) |
|
Fact Tables: History and Incremental Loads |
|
|
307 | (1) |
|
|
308 | (3) |
|
|
308 | (1) |
|
Reemphasizing Etl Metadata |
|
|
309 | (1) |
|
|
310 | (1) |
|
Other Integration Approaches |
|
|
311 | (2) |
|
Enterprise Information Integration (EII) |
|
|
311 | (1) |
|
Enterprise Application Integration (EAI) |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
313 | (1) |
|
|
314 | (1) |
|
13 Data Quality: A Key to Success |
|
|
315 | (24) |
|
|
315 | (1) |
|
Why is Data Quality Critical? |
|
|
316 | (7) |
|
|
316 | (3) |
|
Benefits of Improved Data Quality |
|
|
319 | (1) |
|
Types of Data Quality Problems |
|
|
320 | (3) |
|
|
323 | (3) |
|
Sources of Data Pollution |
|
|
323 | (2) |
|
Validation of Names and Addresses |
|
|
325 | (1) |
|
Costs of Poor Data Quality |
|
|
325 | (1) |
|
|
326 | (2) |
|
Categories of Data Cleansing Tools |
|
|
327 | (1) |
|
|
327 | (1) |
|
|
327 | (1) |
|
The DBMS for Quality Control |
|
|
327 | (1) |
|
|
328 | (7) |
|
|
329 | (1) |
|
Who Should Be Responsible? |
|
|
330 | (3) |
|
|
333 | (1) |
|
Practical Tips on Data Quality |
|
|
334 | (1) |
|
Master Data Management (MDM) |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
336 | (1) |
|
|
336 | (1) |
|
|
336 | (1) |
|
|
337 | (2) |
|
PART 5 INFORMATION ACCESS AND DELIVERY |
|
|
339 | (122) |
|
14 Matching Information to the Classes of Users |
|
|
341 | (32) |
|
|
341 | (1) |
|
Information From the Data Warehouse |
|
|
342 | (7) |
|
Data Warehouse Versus Operational Systems |
|
|
342 | (2) |
|
|
344 | (3) |
|
User-Information Interface |
|
|
347 | (1) |
|
|
348 | (1) |
|
Who Will Use The Information? |
|
|
349 | (7) |
|
|
349 | (3) |
|
|
352 | (2) |
|
How to Provide Information |
|
|
354 | (2) |
|
|
356 | (4) |
|
|
357 | (1) |
|
|
358 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
Information Delivery Tools |
|
|
360 | (6) |
|
|
360 | (1) |
|
Methodology for Tool Selection |
|
|
361 | (3) |
|
|
364 | (1) |
|
Information Delivery Framework |
|
|
365 | (1) |
|
Information Delivery: Special Topics |
|
|
366 | (5) |
|
Business Activity Monitoring (BAM) |
|
|
366 | (1) |
|
Dashboards and Scorecards |
|
|
367 | (4) |
|
|
371 | (1) |
|
|
371 | (1) |
|
|
372 | (1) |
|
15 Olap in the Data Warehouse |
|
|
373 | (34) |
|
|
373 | (1) |
|
Demand for Online Analytical Processing |
|
|
374 | (8) |
|
Need for Multidimensional Analysis |
|
|
374 | (1) |
|
Fast Access and Powerful Calculations |
|
|
375 | (2) |
|
Limitations of Other Analysis Methods |
|
|
377 | (2) |
|
|
379 | (1) |
|
OLAP Definitions and Rules |
|
|
379 | (3) |
|
|
382 | (1) |
|
Major Features and Functions |
|
|
382 | (11) |
|
|
383 | (1) |
|
|
383 | (3) |
|
|
386 | (4) |
|
|
390 | (2) |
|
Slice and Dice or Rotation |
|
|
392 | (1) |
|
|
393 | (1) |
|
|
393 | (5) |
|
|
394 | (1) |
|
|
394 | (1) |
|
|
395 | (2) |
|
|
397 | (1) |
|
OLAP Implementation Considerations |
|
|
398 | (6) |
|
Data Design and Preparation |
|
|
399 | (2) |
|
Administration and Performance |
|
|
401 | (1) |
|
|
402 | (1) |
|
|
402 | (1) |
|
|
403 | (1) |
|
Examples of Typical Implementations |
|
|
404 | (1) |
|
|
404 | (1) |
|
|
405 | (1) |
|
|
405 | (2) |
|
16 Data Warehousing and the Web |
|
|
407 | (22) |
|
|
407 | (1) |
|
Web-Enabled Data Warehouse |
|
|
408 | (6) |
|
|
408 | (2) |
|
Convergence of Technologies |
|
|
410 | (1) |
|
Adapting the Data Warehouse for the Web |
|
|
411 | (1) |
|
|
412 | (1) |
|
|
413 | (1) |
|
Web-Based Information Delivery |
|
|
414 | (6) |
|
|
414 | (2) |
|
New Information Strategies |
|
|
416 | (2) |
|
Browser Technology for the Data Warehouse |
|
|
418 | (1) |
|
|
419 | (1) |
|
|
420 | (1) |
|
|
420 | (1) |
|
|
420 | (1) |
|
|
421 | (1) |
|
Building a Web-Enabled Data Warehouse |
|
|
421 | (5) |
|
Nature of the Data Webhouse |
|
|
422 | (1) |
|
Implementation Considerations |
|
|
423 | (1) |
|
Putting the Pieces Together |
|
|
424 | (2) |
|
|
426 | (1) |
|
|
426 | (1) |
|
|
426 | (1) |
|
|
427 | (2) |
|
|
429 | (32) |
|
|
429 | (1) |
|
|
430 | (9) |
|
|
431 | (1) |
|
The Knowledge Discovery Process |
|
|
432 | (3) |
|
|
435 | (1) |
|
Some Aspects of Data Mining |
|
|
436 | (2) |
|
Data Mining and the Data Warehouse |
|
|
438 | (1) |
|
Major Data Mining Techniques |
|
|
439 | (13) |
|
|
440 | (3) |
|
|
443 | (1) |
|
|
444 | (1) |
|
|
445 | (2) |
|
|
447 | (1) |
|
|
448 | (2) |
|
|
450 | (2) |
|
|
452 | (7) |
|
|
453 | (1) |
|
Applications in CRM (Customer Relationship Management) |
|
|
454 | (1) |
|
Applications in the Retail Industry |
|
|
455 | (1) |
|
Applications in the Telecommunications Industry |
|
|
456 | (1) |
|
Applications in Biotechnology |
|
|
457 | (2) |
|
Applications in Banking and Finance |
|
|
459 | (1) |
|
|
459 | (1) |
|
|
459 | (1) |
|
|
460 | (1) |
|
PART 6 IMPLEMENTATION AND MAINTENANCE |
|
|
461 | (66) |
|
18 The Physical Design Process |
|
|
463 | (26) |
|
|
463 | (1) |
|
|
464 | (3) |
|
|
464 | (1) |
|
|
465 | (1) |
|
Determine the Data Partitioning Scheme |
|
|
465 | (1) |
|
Establish Clustering Options |
|
|
466 | (1) |
|
Prepare an Indexing Strategy |
|
|
466 | (1) |
|
Assign Storage Structures |
|
|
466 | (1) |
|
|
467 | (1) |
|
Physical Design Considerations |
|
|
467 | (6) |
|
Physical Design Objectives |
|
|
467 | (2) |
|
From Logical Model to Physical Model |
|
|
469 | (1) |
|
Physical Model Components |
|
|
469 | (1) |
|
Significance of Standards |
|
|
470 | (3) |
|
|
473 | (4) |
|
Storage Area Data Structures |
|
|
473 | (1) |
|
|
473 | (3) |
|
|
476 | (1) |
|
|
477 | (1) |
|
Indexing the Data Warehouse |
|
|
477 | (6) |
|
|
477 | (2) |
|
|
479 | (2) |
|
|
481 | (1) |
|
|
482 | (1) |
|
|
482 | (1) |
|
Indexing the Dimension Tables |
|
|
483 | (1) |
|
Performance Enhancement Techniques |
|
|
483 | (3) |
|
|
483 | (1) |
|
|
484 | (1) |
|
|
484 | (1) |
|
|
485 | (1) |
|
Referential Integrity Checks |
|
|
485 | (1) |
|
Initialization Parameters |
|
|
485 | (1) |
|
|
486 | (1) |
|
|
486 | (1) |
|
|
486 | (1) |
|
|
487 | (2) |
|
19 Data Warehouse Deployment |
|
|
489 | (22) |
|
|
489 | (1) |
|
|
490 | (1) |
|
|
490 | (1) |
|
|
490 | (1) |
|
Major Deployment Activities |
|
|
491 | (6) |
|
|
491 | (1) |
|
|
492 | (1) |
|
|
493 | (1) |
|
Complete Initial User Training |
|
|
494 | (1) |
|
Institute Initial User Support |
|
|
495 | (1) |
|
|
495 | (2) |
|
Considerations for a Pilot |
|
|
497 | (5) |
|
When is a Pilot Data Mart Useful? |
|
|
497 | (1) |
|
|
498 | (2) |
|
|
500 | (1) |
|
Expanding and Integrating the Pilot |
|
|
501 | (1) |
|
|
502 | (2) |
|
|
502 | (1) |
|
|
502 | (1) |
|
|
503 | (1) |
|
|
504 | (1) |
|
|
504 | (4) |
|
Why Back Up the Data Warehouse? |
|
|
505 | (1) |
|
|
505 | (1) |
|
Setting up a Practical Schedule |
|
|
506 | (1) |
|
|
507 | (1) |
|
|
508 | (1) |
|
|
508 | (1) |
|
|
509 | (2) |
|
20 Growth and Maintenance |
|
|
511 | (16) |
|
|
511 | (1) |
|
Monitoring the Data Warehouse |
|
|
512 | (3) |
|
|
512 | (2) |
|
Using Statistics for Growth Planning |
|
|
514 | (1) |
|
Using Statistics for Fine-Tuning |
|
|
514 | (1) |
|
Publishing Trends for Users |
|
|
515 | (1) |
|
User Training and Support |
|
|
515 | (5) |
|
|
516 | (1) |
|
Preparing the Training Program |
|
|
516 | (2) |
|
Delivering the Training Program |
|
|
518 | (1) |
|
|
519 | (1) |
|
Managing the Data Warehouse |
|
|
520 | (4) |
|
|
521 | (1) |
|
|
521 | (1) |
|
|
522 | (1) |
|
|
522 | (1) |
|
|
523 | (1) |
|
Information Delivery Enhancements |
|
|
523 | (1) |
|
|
524 | (1) |
|
|
524 | (1) |
|
|
525 | (1) |
|
|
525 | (2) |
Answers to Selected Exercises |
|
527 | (4) |
Appendix A Project Life Cycle Steps and Checklists |
|
531 | (4) |
Appendix B Critical Factors for Success |
|
535 | (2) |
Appendix C Guidelines for Evaluating Vendor Solutions |
|
537 | (2) |
Appendix D Highlights of Vendors and Products |
|
539 | (10) |
Appendix E Real-World Examples of Best Practices |
|
549 | (6) |
References |
|
555 | (2) |
Glossary |
|
557 | (8) |
Index |
|
565 | |