Muutke küpsiste eelistusi

E-raamat: Decision Forests for Computer Vision and Medical Image Analysis

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This practical, easy-to-follow book reviews the theoretical underpinnings of decision forests, organizing the existing literature in a new, general-purpose forest model. Includes exercises and experiments; slides, videos and more reside at a companion website.

This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.

Arvustused

From the reviews:

This book is a comprehensive presentation of the theory and use of decision forests in a wide range of applications, centered on computer vision and medical imaging. The book is strikingly well integrated. This is an excellent volume on the concept, theory, and application of decision forests. I highly recommend it to those currently working in the field, as well as researchers desiring an introduction to the application of random forests for imaging applications. (Creed Jones, Computing Reviews, March, 2014)

1 Overview and Scope
1(2)
A. Criminisi
J. Shotton
2 Notation and Terminology
3(4)
A. Criminisi
J. Shotton
Part I The Decision Forest Model
3 Introduction: The Abstract Forest Model
7(18)
A. Criminisi
J. Shotton
4 Classification Forests
25(22)
A. Criminisi
J. Shotton
5 Regression Forests
47(12)
A. Criminisi
J. Shotton
6 Density Forests
59(20)
A. Criminisi
J. Shotton
7 Manifold Forests
79(16)
A. Criminisi
J. Shotton
8 Semi-supervised Classification Forests
95(16)
A. Criminisi
J. Shotton
Part II Applications in Computer Vision and Medical Image Analysis
9 Keypoint Recognition Using Random Forests and Random Ferns
111(14)
V. Lepetit
P. Fua
10 Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval
125(18)
R. Maree
L. Wehenkel
P. Geurts
11 Class-Specific Hough Forests for Object Detection
143(16)
J. Gall
V. Lempitsky
12 Hough-Based Tracking of Deformable Objects
159(16)
M. Godec
P.M. Roth
H. Bischof
13 Efficient Human Pose Estimation from Single Depth Images
175(18)
J. Shotton
R. Girshick
A. Fitzgibbon
T. Sharp
M. Cook
M. Finocchio
R. Moore
P. Kohli
A. Criminisi
A. Kipman
A. Blake
14 Anatomy Detection and Localization in 3D Medical Images
193(18)
A. Criminisi
D. Robertson
O. Pauly
B. Glocker
E. Konukoglu
J. Shotton
D. Mateus
A. Martinez Moller
S.G. Nekolla
N. Navab
15 Semantic Texton Forests for Image Categorization and Segmentation
211(18)
M. Johnson
J. Shotton
R. Cipolla
16 Semi-supervised Video Segmentation Using Decision Forests
229(16)
V. Badrinarayanan
I. Budvytis
R. Cipolla
17 Classification Forests for Semantic Segmentation of Brain Lesions in Multi-channel MRI
245(16)
E. Geremia
D. Zikic
O. Clatz
B.H. Menze
B. Glocker
E. Konukoglu
J. Shotton
O.M. Thomas
S.J. Price
T. Das
R. Jena
N. Ayache
A. Criminisi
18 Manifold Forests for Multi-modality Classification of Alzheimer's Disease
261(12)
K.R. Gray
P. Aljabar
R.A. Heckemann
A. Hammers
D. Rueckert
19 Entanglement and Differentiable Information Gain Maximization
273(22)
A. Montillo
J. Tu
J. Shotton
J. Winn
J.E. Iglesias
D.N. Metaxas
A. Criminisi
20 Decision Tree Fields: An Efficient Non-parametric Random Field Model for Image Labeling
295(18)
S. Nowozin
C. Rother
S. Bagon
T. Sharp
B. Yao
P. Kohli
Part III Implementation and Conclusion
21 Efficient Implementation of Decision Forests
313(20)
J. Shotton
D. Robertson
T. Sharp
22 The Sherwood Software Library
333(10)
D. Roberston
J. Shotton
T. Sharp
23 Conclusions
343(4)
A. Criminisi
J. Shotton
References 347(20)
Index 367