Muutke küpsiste eelistusi

E-raamat: Decorated Dyck Paths, Polyominoes, and the Delta Conjecture

  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both Haglund ("A proof of the Schroder conjecture", 2004) and Aval et al. ("Statistics on parallelogram polyominoes and a analogue of the Narayana numbers", 2014). This settles in particular the cases and of the Delta conjecture of Haglund, Remmel and Wilson ("The delta conjecture", 2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g., from Aval, Bergeron and Garsia [ 2015], Haglund, Remmel and Wilson [ 2018], and Zabrocki [ 2019]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in "A proof of the Schroder conjecture" (2004)"--

D'Adderio, Iraci, and Wyngaerd discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case in the main results of both Haglund (2001) and Aval et al. (2014). This settles in particular the cases of the Delta conjecture of Haglund, Remmel, and Wilson (2018), they say. They cover background and definitions, conjectures, and their results, then provide proofs for symmetric functions, combinatorics of decorated Dyck paths, combinatorics of polyominoes, putting the pieces together, and square paths. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Michele D'Adderio, Universite Libre de Bruxelles, Belgium.

Alessandro Iraci, Universita di Pisa, Italy, and Universite Libre de Bruxelles, Belgium.

Anna Vanden Wyngaerd, Universite Libre de Bruxelles, Belgium.