Muutke küpsiste eelistusi

E-raamat: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed joint proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018.





The 39 full papers presented at DLMIA 2018 and the 4 full papers presented at ML-CDS 2018 were carefully reviewed and selected from 85 submissions to DLMIA and 6 submissions to ML-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.
Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a
3D Residual CNN with Distance Prior.- Weakly Supervised Localisation for
Fetal Ultrasound Images.- Learning to Decode 7T-like MR Image Reconstruction
from 3T MR Images.- Segmentation of Head and Neck Organs-At-Risk in
Longitudinal CT Scans Combining Deformable Registrations and Convolutional
Neural Networks.- Iterative Segmentation from Limited Training Data:
Applications to Congenital Heart Disease.- Contextual Additive Networks to
Efficiently Boost 3D Image Segmentations.- Longitudinal detection of
radiological abnormalities with time-modulated LSTM.- SCAN: Structure
Correcting Adversarial Network for Organ Segmentation in Chest X-rays.-
Active Learning for Segmentation by Optimizing Content Information for
Maximal Entropy.- Rapid Training Data Generation for Tissue Segmentation
Using Global Approximate Block-Matching with Self-Organizing Maps.-
Reinforced Auto-Zoom Net: Towards Accurate and Fast Breast Cancer
Segmentation in Whole-slide Images.- Deep semi-supervised segmentation with
weight-averaged consistency targets.- Focal Dice Loss and Image Dilation for
Brain Tumor Segmentation.- Automatic Detection of Patients with a High Risk
of Systolic Cardiac Failure in Echocardiography.- Unsupervised feature
learning for outlier detection with stacked convolutional autoencoders,
siamese networks and Wasserstein autoencoders: application to epilepsy
detection.- Automatic myocardial strain imaging in echocardiography using
deep learning.- 3D Convolutional Neural Networks for Classification of
Functional Connectomes.- Computed Tomography Image Enhancement using 3D
Convolutional Neural Network.- Deep Particle Tracker: Automatic Tracking of
Particles in Fluorescence Microscopy Images Using Deep Learning.- A Unified
Framework Integrating Recurrent Fully-convolutional Networks and Optical Flow
for Segmentation of the Left Ventricle in Echocardiography Data.- Learning
Optimal Deep Projection of 18 F-FDG PET Imaging for Early Differential
Diagnosis of Parkinsonian Syndromes.- Learning to Segment Medical Images with
Scribble-Supervision Alone.- Unsupervised Probabilistic Deformation Modeling
for Robust Diffeomorphic Registration.- TreeNet: Multi-Loss Deep Learning
Network to Predict Branch Direction for Extracting 3D Anatomical Trees.-
Active Deep Learning with Fisher Information for Patch-wise Semantic
Segmentation.- UOLO - automatic object detection and segmentation in
biomedical images.- Pediatric Bone Age Assessment Using Deep Convolutional
Neural Networks.- Multi-Scale Residual Network with Two Channels of Raw CT
Image and Its Differential Excitation Component for Emphysema
Classification.- Nonlinear adaptively learned optimization for object
localization in 3D medical images.- Automatic Segmentation of Pulmonary Lobes
Using a Progressive Dense V-Network.- UNet++: A Nested U-Net Architecture for
Medical Image Segmentation.- MTMR-Net: Multi-Task Deep Learning with Margin
Ranking Lossfor Lung Nodule Analysis.- PIMMS: Permutation Invariant
Multi-Modal Segmentation.- Handling Missing Annotations for Semantic
Segmentation with Deep ConvNets.- 3D Deep Affine-Invariant Shape Learning for
Brain MR Image Segmentation.- ScarGAN: Chained Generative Adversarial
Networks to Simulate Pathological Tissue on Cardiovascular MR Scans.-
Unpaired Deep Cross-modality Synthesis with Fast Training .- Monte-Carlo
Sampling applied to Multiple Instance Learning for Histological Image
Classification.- Unpaired Brain MR-to-CT Synthesis using a
Structure-Constrained CycleGAN.- A Multi-Scale Multiple Sclerosis Lesion
Change Detection in a Multi-Sequence MRI.- Multi-task Sparse Low-rank
Learning for Multi-classification of Parkinsons Disease.- Optic Disc
segmentation in Retinal Fundus Images using Fully Convolutional Network and
Removal of False-positives Based on Shape Features.- Integrating deformable
modeling with 3D deep neural network segmentation.