Muutke küpsiste eelistusi

E-raamat: Deep Learning for Social Media Data Analytics

Edited by , Edited by , Edited by , Edited by
  • Formaat: EPUB+DRM
  • Sari: Studies in Big Data 113
  • Ilmumisaeg: 18-Sep-2022
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031108693
  • Formaat - EPUB+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Studies in Big Data 113
  • Ilmumisaeg: 18-Sep-2022
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031108693

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This edited book covers ongoing research in both theory and practical applications of using deep learning for social media data. Social networking platforms are overwhelmed by different contents, and their huge amounts of data have enormous potential to influence business, politics, security, planning and other social aspects. Recently, deep learning techniques have had many successful applications in the AI field. The research presented in this book emerges from the conviction that there is still much progress to be made toward exploiting deep learning in the context of social media data analytics. It includes fifteen chapters, organized into four sections that report on original research in network structure analysis, social media text analysis, user behaviour analysis and social media security analysis. This work could serve as a good reference for researchers, as well as a compilation of innovative ideas and solutions for practitioners interested in applying deep learning techniques to social media data analytics.





 
Node Classification using Deep Learning in Social
Networks.- NN-LP-CF: Neural Network based Link Prediction on Social
Networks using Centrality-based Features.- Deep Learning for
Code-Mixed Text Mining in Social Media: A Brief Review.- Convolutional
and Recurrent Neural Networks for Opinion Mining on Drug Reviews.- Text-based
Sentiment Analysis using Deep Learning Techniques.- Social
Sentiment Analysis Using Features based Intelligent Learning Techniques.