Muutke küpsiste eelistusi

E-raamat: Deep Learning Techniques for Automation and Industrial Applications

Edited by (University of Madras), Edited by , Edited by , Edited by , Edited by (Bundelkhand University, India), Edited by (Chandigarh University, Punjab, India)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 24-Jun-2024
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781394234257
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 192,66 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 24-Jun-2024
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781394234257
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides state-of-the-art approaches to deep learning in areas of detection and prediction, as well as future framework development, building service systems and analytical aspects in which artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used.

Deep learning algorithms and techniques are found to be useful in various areas, such as automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delays in children. “Deep Learning Techniques for Automation and Industrial Applications” presents a concise introduction to the recent advances in this field of artificial intelligence (AI). The broad-ranging discussion covers the algorithms and applications in AI, reasoning, machine learning, neural networks, reinforcement learning, and their applications in various domains like agriculture, manufacturing, and healthcare. Applying deep learning techniques or algorithms successfully in these areas requires a concerted effort, fostering integrative research between experts from diverse disciplines from data science to visualization.

This book provides state-of-the-art approaches to deep learning covering detection and prediction, as well as future framework development, building service systems, and analytical aspects. For all these topics, various approaches to deep learning, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms, are explained.

Audience

The book will be useful to researchers and industry engineers working in information technology, data analytics network security, and manufacturing. Graduate and upper-level undergraduate students in advanced modeling and simulation courses will find this book very useful.

Preface xiii

1 Text Extraction from Images Using Tesseract 1
Santosh Kumar, Nilesh Kumar Sharma, Mridul Sharma and Nikita Agrawal

2 Chili Leaf Classification Using Deep Learning Techniques 19
Chenchupalli Chathurya, Diksha Sachdeva and Mamta Arora

3 Fruit Leaf Classification Using Transfer Learning Techniques 31
Taha Siddiqui, Surbhit Chopra and Mamta Arora

4 Classification of University of California (UC), Merced Land-Use Dataset Remote Sensing Images Using Pre-Trained Deep Learning Models 45
Abhishek Maurya, Akashdeep and Rohit Kumar

5 Sarcastic and Phony Contents Detection in Social Media Hindi Tweets 69
Surbhi Sharma and Nisheeth Joshi

6 Removal of Haze from Synthetic and Real Scenes Using Deep Learning and Other AI Techniques 85
Pushpa Koranga, Ravindra Singh Koranga, Sumitra Singar and Sandeep Gupta

7 HOG and Haar Feature Extraction-Based Security System for Face Detection and Counting 99
Prachi Soni and Viplav Soni

8 A Comparative Analysis of Different CNN Models for Spatial Domain Steganalysis 109
Ankita Gupta, Rita Chhikara and Prabha Sharma

9 Making Invisible Bluewater Visible Using Machine and Deep Learning Techniques--A Review 129
Dineshkumar Singh and Vishnu Sharma

10 Fruit Leaf Classification Using Transfer Learning for Automation and Industrial Applications 151
Inam Ul Haq, Gursimran Kaur and Adil Husain Rather

11 Green AI: Carbon-Footprint Decoupling System 179
Bindiya Jain and Shikha Sharma

12 Review of State-of-Art Techniques for Political Polarization from Social Media Network 199
Akshita Bhatnagar and B.K. Sharma

13 Collaborative Design and Case Analysis of Mobile Shopping Apps: A Deep Learning Approach 223
Santosh Kumar, Vipul Jain, Abhishek Bairwa and Pradeep Saharan

14 Exploring the Potential of Machine Learning and Deep Learning for COVID-19 Detection 235
Saimul Bashir, Faisal Firdous and Syed Zoofa Rufai

References 253

Index 257