Muutke küpsiste eelistusi

E-raamat: Deep Learning Theory and Applications: 4th International Conference, DeLTA 2023, Rome, Italy, July 13-14, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book consitiutes the refereed proceedings of the 4th International Conference on Deep Learning Theory and Applications, DeLTA 2023, held in Rome, Italy from 13 to 14 July 2023.

The 9 full papers and 22 short papers presented were thoroughly reviewed and selected from the 42 qualified submissions. The scope of the conference includes such topics as models and algorithms; machine learning; big data analytics; computer vision applications; and natural language understanding.
Pervasive AI: (deep) Learning into the Wild.- Deep Reinforcement
Learning to Improve Traditional Supervised Learning Methodologies.- Synthetic
Network Traffic Data Generation and Classification of Advanced Persistent
Threat Samples: A Case Study with GANs and XGBoost.- Improving Primate Sounds
Classification Using Binary Presorting for Deep Learning.- Towards Exploring
Adversarial Learning for Anomaly Detection in Complex Driving
Scenes.- Dynamic Prediction of Survival Status in Patients Undergoing Cardiac
Catheterization Using a Joint Modeling Approach.- A Machine Learning
Framework for Shuttlecock Tracking and Player Service Fault Detection.- An
Automated Dual-Module Pipeline for Stock Prediction: Integrating N-Perception
Period Power Strategy and NLP-Driven.- Sentiment Analysis for Enhanced
Forecasting Accuracy and Investor Insight.- Machine Learning Applied to
Speech Recordings for Parkinsons Disease Recognition.- Vision Transformers
for Galaxy Morphology Classification: Fine-Tuning Pre-Trained Networks vs.
Training from Scratch.- A Study of Neural Collapse for Text
Classification.- Research Data Reusability with Content-Based Recommender
System.- MSDeepNet: A Novel Multi-Stream Deep Neural Network for Real-World
Anomaly Detection in Surveillance Videos.- A Novel Probabilistic Approach for
Detecting Concept Drift in Streaming Data.- Explaining Relation
Classification Models with Semantic Extents.- Phoneme-Based Multi-Task
Assessment of Affective Vocal Bursts.- Using Artificial Intelligence to
Reduce the Risk of Transfusion Hemolytic Reactions.- ALE: A Simulation-Based
Active Learning Evaluation Framework for the Parameter-Driven Comparison of
Query Strategies for NLP.- Exploring ASR Models in Low-Resource Languages:
Use-Case the Macedonian Language.- Facilitating Enterprise Model
Classification via Embedding Symbolic Knowledge into Neural Network
Models.- Explainable Abnormal Time Series Subsequence Detection Using Random
Convolutional Kernels.- TaxoSBERT: Unsupervised Taxonomy Expansion Through
Expressive Semantic Similarity.- Towards Equitable AI in HR: Designing a
Fair, Reliable, and Transparent Human Resource Management Application.- An
Explainable Approach for Early Parkinson Disease Detection Using Deep
Learning.- UMLDesigner: An Automatic UML Diagram Design Tool.- Graph Neural
Networks for Circuit Diagram Pattern Generation.- Generative Adversarial
Networks for Domain Translation in Unpaired Breast DCE-MRI Datasets.- A
Survey on Reinforcement Learning and Deep Reinforcement Learning for
Recommender Systems.- GAN-Powered Model&Landmark-Free Reconstruction: A
Versatile Approach for High-Quality 3D Facial and Object Recovery from Single
Images.-GAN-Based LiDAR Intensity Simulation.- Evaluating Prototypes and
Criticisms for Explaining Clustered Contributions in Digital Public
Participation Processes.- FRLL-Beautified: A Dataset of Fun Selfie Filters
with Facial Attributes.- CSR & Sentiment Analysis: A New Customized
Dictionary.