Muutke küpsiste eelistusi

E-raamat: Deep Learning Theory and Applications: Third International Conference, DeLTA 2022, Lisbon, Portugal, July 12-14, 2022, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed post-conference proceedings of the Third International Conference on Deep Learning Theory and Applications, DeLTA 2022, held in Lisbon, Portugal, during January 17-18, 2022.

The 6 full papers included in this book were carefully reviewed and selected from 36 submissions. They present recent research on machine learning and artificial intelligence in real-world applications such as computer vision, information retrieval and summarization from structured and unstructured multimodal data sources, natural language understanding and translation, and many other application domains.
Modified SkipGram Negative Sampling Model for Faster Convergence of
Graph Embedding.- Active Collection of Well-being and Health Data in Mobile
Devices.- Reliable Classification of Images by Calculating Their Credibility
using a Layer-wise Activation Cluster Analysis of CNNs.- Trac Sign
Repositories: Bridging the Gap between Real and
Synthetic Data.- Convolutional Neural Networks for Structural Damage
Localization on Digital Twins.- Evaluating and Improving RoSELS for Road
Surface Extraction from 3D Automotive LiDAR Point Cloud Sequences.