Muutke küpsiste eelistusi

E-raamat: Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems

  • Formaat: 216 pages
  • Ilmumisaeg: 06-Jun-2024
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781040026618
  • Formaat - EPUB+DRM
  • Hind: 106,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 216 pages
  • Ilmumisaeg: 06-Jun-2024
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781040026618

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book aims to highlight the potential of Deep Learning (DL)-enabled methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.

The authors first introduce basic applications of DL-enabled IFD, including auto-encoders, deep belief networks, and convolutional neural networks. Advanced topics of DL-enabled IFD are also explored, such as data augmentation, multi-sensor fusion, unsupervised deep transfer learning, neural architecture search, self-supervised learning, and reinforcement learning. Aiming to revolutionise the nature of IFD, the book contributes to improved efficiency, safety and reliability of mechanical systems in various industrial domains.

The book will appeal to academic researchers, practitioners, and students in the fields of intelligent fault diagnosis, prognostics and health management, and deep learning.



The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.

1:Introduction and Background Part I: Basic applications of deep learning enabled Intelligent Fault Diagnosis 2:Auto-encoders for Intelligent Fault Diagnosis 3:Deep Belief Networks for Intelligent Fault Diagnosis 4:Convolutional Neural Networks for Intelligent Fault Diagnosis Part II: advanced topics of deep learning enabled Intelligent Fault Diagnosis 5:Data Augmentation for Intelligent Fault Diagnosis 6:Multi-sensor Fusion for Intelligent Fault Diagnosis 7: Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis 8: Neural Architecture Search for Intelligent Fault Diagnosis 9: Self-Supervised Learning (SSF) for Intelligent Fault Diagnosis 10: Reinforcement Learning for Intelligent Fault Diagnosis

Ruqiang Yan is a professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include data analytics, AI, and energy-efficient sensing and sensor networks for the condition monitoring and health diagnosis of large-scale, complex, dynamical systems.

Zhibin Zhao is an assistant professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include sparse signal processing and machine learning, especially deep learning for machine fault detection, diagnosis, and prognosis.