Muutke küpsiste eelistusi

E-raamat: Deep Sequencing Data Analysis

Edited by
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The new genetic revolution is fuelled by Deep Sequencing (or Next Generation Sequencing) apparatuses which, in essence, read billions of nucleotides per reaction. Effectively, when carefully planned, any experimental question which can be translated into reading nucleic acids can be applied.In Deep Sequencing Data Analysis, expert researchers in the field detail methods which are now commonly used to study the multi-facet deep sequencing data field. These included techniques for compressing of data generated, Chromatin Immunoprecipitation (ChIP-seq), and various approaches for the identification of sequence variants. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of necessary materials and reagents, step-by-step, readily reproducible protocols, and key tips on troubleshooting and avoiding known pitfalls.

Authoritative and practical, Deep Sequencing Data Analysis seeks to aid scientists in the further understanding of key data analysis procedures for deep sequencing data interpretation.



This book details key data analysis procedures for deep sequencing data interpretation. It includes lists of necessary materials and reagents; step-by-step, readily reproducible protocols, and key tips on troubleshooting and avoiding known pitfalls.

An Introduction to High-throughput Sequencing Experiments: Design and
Bioinformatics Analysis.- Compressing Resequencing Data with GReEn .- On the
Accuracy of Short Read Mapping.- Statistical Modeling of Coverage in
High-Throughput Data.- Assembly Algorithms for Deep Sequencing Data: Basics
and Pitfalls.- Short Reads Mapping for Exome Sequencing. ­Profiling Short
Tandem Repeats from Short Reads.- Exome Sequencing Analysis: A Guide to
Disease Variant Detection.- Identifying RNA Editing Sites in miRNAs by Deep
Sequencing.- Identifying Differential Alternative Splicing Events from RNA
Sequencing Data using RNASeq-MATS.- Optimizing Detection of Transcription
Factor Binding Sites in ChIP-seq Experiments.- Statistical Analysis of
ChIP-seq Data with MOSAiCS.- Detection of Reverse Transcriptase Termination
Sites using cDNA Ligation and Massive Parallel Sequencing.