Muutke küpsiste eelistusi

E-raamat: Deep Space Communications

Edited by (Gateway 2000)
  • Formaat - EPUB+DRM
  • Hind: 166,66 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A collection of some of the Jet Propulsion Laboratory’s space missions selected to represent the planetary communications designs for and progression of various types of missions

The text uses a case study approach to show the communications link performance resulting from the planetary communications design developed by the Jet Propulsion Laboratory (JPL). This is accomplished through the description of the design and performance of six representative planetary missions. These six cases illustrate progression through time of the communications system’s capabilities and performance from 1970s technology to the most recent missions. The six missions discussed in this book span the Voyager for fly-bys in the 1970s, Galileo for orbiters in the 1980s, Deep Space 1 for the 1990s, Mars Reconnaissance Orbiter (MRO) for planetary orbiters, Mars Exploration Rover (MER) for planetary rovers in the 2000s, and the MSL rover in the 2010s.

Deep Space Communications:

  • Provides an overview of the Deep Space Network and its capabilities
  • Examines case studies to illustrate the progression of system design and performance from mission to mission and provides a broad overview of the missions systems described
  • Discusses actual flight mission telecom performance of each system

Deep Space Communications serves as a reference for scientists and engineers interested in communications systems for deep-space telecommunications link analysis and design control.

Jim Taylor is a principal engineer at JPL, working on telecommunications analysis, ground-system implementation, and flight operations for deep-space and Earth-orbiting projects. He was the founding telecommunications member of JPL's Spaceflight Significant Events Group, now called Lessons Learned. He received the NASA Exceptional Achievement Medal in 2000 for innovative use of the DS1 communications systems and the NASA Exceptional Service Medal in 2006 for operational development and support onDeep Impact.

Foreword xv
Preface xvii
Acknowledgments xix
Contributors xxiii
Chapter 1 Deep Space Communications: An Introduction 1(14)
Joseph H. Yuen
1.1 Introduction and Overview
1(3)
1.2 Telecommunications Link Analysis
4(4)
1.2.1 Received Power
4(1)
1.2.2 Noise Spectral Density
5(1)
1.2.3 Carrier Performance Margin
6(1)
1.2.4 Telemetry and Command Performance Margins
6(1)
1.2.5 Ranging Performance Margin
7(1)
1.3 Communications Design Control
8(4)
1.3.1 Design Control Tables
8(1)
1.3.2 Design Procedure and Performance Criterion Selection
9(3)
References
12(3)
Chapter 2 The Deep Space Network: A Functional Description 15(22)
Jim Taylor
2.1 Uplink and Downlink Carrier Operation
17(4)
2.1.1 The 34-m BWG Stations
17(2)
2.1.2 The 70-m (DSS-14 and DSS-43) Stations
19(2)
2.2 Radiometric Data (Doppler and Ranging)
21(3)
2.3 Delta Differential One-Way Ranging
24(1)
2.4 Command Processing and Radiation
25(3)
2.5 Telemetry Demodulation and Decoding
28(3)
2.6 DSN Performance
31(4)
2.6.1 Antenna Gain
32(1)
2.6.2 Transmitter Power
33(1)
2.6.3 System Noise Temperature
33(1)
2.6.4 Thresholds and Limits
33(2)
References
35(2)
Chapter 3 Voyager Telecommunications 37(42)
Roger Ludwig
Jim Taylor
3.1 Voyager Interstellar Mission Description
37(7)
3.2 Overview of Telecom Functional Capabilities
44(4)
3.2.1 Uplink
46(1)
3.2.2 Downlink
47(1)
3.3 Spacecraft Telecom System Design
48(8)
3.3.1 Spacecraft Telecom System Overview
48(3)
3.3.2 Modulation Demodulation Subsystem
51(1)
3.3.3 Radio Frequency Subsystem
52(2)
3.3.4 SIX-Band Antenna Subsystem
54(1)
3.3.5 Telecom System Input Power and Mass
55(1)
3.4 Telecom Ground System Description
56(4)
3.4.1 Uplink and Downlink Carrier Operation
57(2)
3.4.2 Command Processing
59(1)
3.4.3 Telemetry Processing
59(1)
3.5 Sample Telecom System Performance
60(4)
3.5.1 Design Control Tables
61(1)
3.5.2 Long-Term Planning Predicts
61(3)
3.6 New Spacecraft and Ground Telecom Technology
64(5)
3.6.1 Spacecraft and Telecom Link Design Compared with Previous Missions
64(1)
3.6.2 Spacecraft Improvements for Uranus and Neptune Encounters
64(1)
3.6.3 Ground System Performance Improvements
65(3)
3.6.4 Ground Display and Operability Improvements
68(1)
3.7 Operational Scenarios of the Voyager Interstellar Mission
69(5)
3.7.1 Tracking Coverage
69(1)
3.7.2 RFS Strategies
70(2)
3.7.3 Spacecraft Fault Protection
72(2)
References
74(2)
Additional Resources
76(3)
Chapter 4 Galileo Telecommunications 79(56)
Jim Taylor
Kar-Ming Cheung
Dongae Seo
4.1 Mission and Spacecraft Description
79(7)
4.1.1 The Mission
79(3)
4.1.2 The Spacecraft
82(4)
4.2 Galileo Spacecraft Telecommunications System
86(12)
4.2.1 Galileo Telecommunications Functions and Modes
87(2)
4.2.2 Radio Frequency Subsystem
89(1)
4.2.3 Modulation Demodulation Subsystem
90(2)
4.2.4 S-/X-Band Antenna Subsystem
92(1)
4.2.5 X- to S-Band Downconverter
93(1)
4.2.6 Telecom Hardware Performance during Flight
93(3)
4.2.7 Orbiter Input Power and Mass Summary
96(2)
4.3 Galileo S-Band Mission
98(8)
4.3.1 Overview
98(3)
4.3.2 Ground System Improvements for Galileo S-Band Mission
101(2)
4.3.3 Data Compression
103(3)
4.3.4 Galileo Encoding and Feedback Concatenated Decoding
106(9)
4.4 Telecom Link Performance
110(1)
4.4.1 Design Control Tables
111(1)
4.4.2 Long-Term Planning Predicts
112(3)
4.5 Telecom Operational Scenarios
115(10)
4.5.1 Planned and Actual DSN Coverage
115(1)
4.5.2 Launch Phase
115(1)
4.5.3 Cruise Phase
116(2)
4.5.4 HGA Deployment Attempts
118(2)
4.5.5 Probe Separation, Jupiter Cruise, and Jupiter Orbit Insertion
120(1)
4.5.6 Orbital Operational Phase
121(2)
4.5.7 Solar Conjunction
123(2)
4.5.8 Galileo Europa Mission and Galileo Millennium Mission
125(1)
4.6 Probe-to-Orbiter Relay-Link Design
125(4)
4.6.1 Overview
125(1)
4.6.2 Link Requirements and Design
126(2)
4.6.3 Summary of Achieved Relay-Link Performance
128(1)
4.7 Lessons Learned
129(2)
References
131(4)
Chapter 5 Deep Space 1 135(58)
Jim Taylor
Michela Munoz Fernandez
Ana I. Bolea-Alamanac
Kar-Ming Cheung
5.1 Mission and Spacecraft Description
136(3)
5.1.1 Technology Validation
136(1)
5.1.2 Mission Overview
137(1)
5.1.3 Telecom Subsystem Overview
138(1)
5.2 Telecom Subsystem Requirements
139(1)
5.3 Telecom System Description
140(4)
5.4 DS1 Telecom Technology
144(9)
5.4.1 Small Deep Space Transponder (SDST)
144(3)
5.4.2 Ka-Band Solid-State Power Amplifier (KaPA)
147(2)
5.4.3 Beacon Monitor Operations Experiment (BMOX)
149(4)
5.4.4 Telecom System Mass and Input Power
153(1)
5.5 Telecom Ground System Description
153(8)
5.5.1 Uplink and Downlink Carrier Operation
154(1)
5.5.2 Radiometric Data (Doppler and Ranging)
154(3)
5.5.3 Command Processing and Radiation
157(1)
5.5.4 Telemetry Demodulation, Decoding, Synchronization, and Display
158(3)
5.6 Telecom Link Performance
161(12)
5.7 Operational Scenarios
173(10)
5.7.1 Launch
173(1)
5.7.2 Safing
174(1)
5.7.3 Anchor Pass (at HGA Earth Point, High Rate)
174(1)
5.7.4 Midweek Pass (at Thrust Attitude for IPS Operation)
175(1)
5.7.5 High-Gain-Antenna Activity (January-June 2000, March 2001)
176(5)
5.7.6 Solar Conjunction
181(2)
5.7.7 Ka-Band Downlink
183(1)
5.8 Lessons Learned
183(7)
5.8.1 Telecom-Related Lessons Learned
183(5)
5.8.2 Project-Level Lessons Learned
188(2)
References
190(2)
Additional Resources
192(1)
Chapter 6 Mars Reconnaissance Orbiter 193(58)
Jim Taylor
Dennis K. Lee
Shervin Shambayati
6.1 Mission Overview
193(1)
6.2 Mission Phases and Orbit Summary
194(13)
6.2.1 Mission Objectives
194(1)
6.2.2 The MRO Spacecraft
195(1)
6.2.3 Mission Phases
196(8)
6.2.4 The MRO Orbit and Its Relay Coverage for Surface Vehicles
204(2)
6.2.5 MRO Orbit Phasing to Support Landing Vehicle EDL
206(1)
6.3 Telecommunications Subsystem Overview
207(20)
6.3.1 X-Band: Cruise and Orbital Operations
207(12)
6.3.2 UHF: Proximity Relay Communications
219(8)
6.3.3 Ka-Band: Operational Demonstration
227(1)
6.4 Ground Data System
227(4)
6.4.1 Deep Space Network
227(1)
6.4.2 Ka-Band Demonstration Requirements
228(1)
6.4.3 Ground Data Network Flow for Relay Data through Electra
229(2)
6.5 X-Band Telecom Operations
231(9)
6.5.1 Cruise Calibrations
231(1)
6.5.2 MOI Telecom Configurations
231(1)
6.5.3 Aerobraking Telecom Configurations
232(1)
6.5.4 Downlink Telemetry Modulation and Coding
233(3)
6.5.5 Coordinating MRO and MER X-Band Operations
236(4)
6.6 Ka-Band Cruise Verification
240(6)
6.6.1 Ka-Band Operations Overview
240(1)
6.6.2 Ka-Band Link Prediction and Performance during Cruise
240(2)
6.6.3 Ka-Band Communications Demonstration Plans
242(1)
6.6.4 Spacecraft X-Band and Ka-Band Constraints and Operational Factors
243(1)
6.6.5 Delta-DOR X-Band and Ka-Band Operations and Performance
244(1)
6.6.6 Planned Solar Conjunction Experiments
245(1)
6.7 Lessons Learned
246(2)
6.7.1 X-Band
246(1)
6.7.2 Ka-Band
247(1)
6.7.3 UHF
248(1)
References
248(3)
Chapter 7 Mars Exploration Rover Telecommunications 251(108)
Jim Taylor
Andre Makovsky
Andrea Barbieri
Ramona Tung
Polly Estabrook
A. Gail Thomas
7.1 Mission and Spacecraft Summary
252(9)
7.1.1 Mission Objectives
252(1)
7.1.2 Mission Description
253(2)
7.1.3 The Spacecraft
255(6)
7.2 Telecommunications Subsystem Overview
261(6)
7.2.1 X-Band: Cruise, EDL, Surface
261(1)
7.2.2 UHF: EDL, Surface
262(1)
7.2.3 Direct-to-Earth Downlink Capability
263(1)
7.2.4 UHF Relay Capability
263(4)
7.3 Telecom Subsystem Hardware and Software
267(18)
7.3.1 X-Band Flight Subsystem Description
267(13)
7.3.2 UHF
280(5)
7.3.3 MER Telecom Hardware Mass and Power Summary
285(1)
7.4 Ground Systems
285(14)
7.4.1 Deep Space Network
285(6)
7.4.2 Entry, Descent, and Landing Communications
291(5)
7.4.3 Relay Data Flow
296(3)
7.5 Telecom Subsystem and Link Performance
299(37)
7.5.1 X-Band: Cruise, EDL, and Surface
299(23)
7.5.2 UHF: EDL and Primary Mission Surface Operations
322(14)
7.6 Lessons Learned
336(19)
7.6.1 What Could Serve as a Model for the Future
337(7)
7.6.2 What Could Be Improved
344(11)
7.7 Beyond the Extended Mission
355(1)
7.7.1 Spirit
355(1)
7.7.2 Opportunity
356(1)
References
356(3)
Chapter 8 Mars Science Laboratory 359(140)
Andre Makovsky
Peter Ilott
Jim Taylor
8.1 Mars Science Laboratory Mission and Spacecraft Summary
359(48)
8.1.1 Mission Description
362(2)
8.1.2 Launch/Arrival Period Selection
364(6)
8.1.3 Launch Phase and Initial Acquisition
370(11)
8.1.4 Cruise Phase
381(3)
8.1.5 Approach Phase
384(1)
8.1.6 EDL Phase
385(15)
8.1.7 Flight System Description
400(7)
8.2 Telecom Subsystem Overview
407(52)
8.2.1 Telecom for Launch, Cruise, and into EDL
412(1)
8.2.2 Surface Operations
413(2)
8.2.3 X-Band Flight Subsystem Description
415(26)
8.2.4 UHF Flight Subsystem Description
441(13)
8.2.5 Terminal Descent Sensor (Landing Radar) Description
454(3)
8.2.6 MSL Telecom Hardware Mass and Power Summary
457(2)
8.3 Ground Systems EDL Operations: EDL Data Analysis (EDA)
459(1)
8.4 Telecom Subsystem Link Performance
460(21)
8.4.1 X-Band
460(14)
8.4.2 UHF
474(7)
8.5 Surface Operations (Plans)
481(7)
8.5.1 Mission Operations System Approach
481(1)
8.5.2 Initial Surface Ground Operations
482(2)
8.5.3 Tactical Operations after First 90 Sols
484(1)
8.5.4 UHF Telecom Constraints
484(4)
8.6 Surface Operations (Characterized in Flight)
488(6)
8.6.1 Mitigating the Effects of Electromagnetic Interference
489(1)
8.6.2 Data Volume Achieved with MRO and Odyssey Links
489(2)
8.6.3 Relay Link Models
491(3)
References
494(5)
Acronyms and Abbreviations 499(24)
About the Companion Website 523(2)
Index 525
JIM TAYLOR is a principal engineer at JPL, working on telecommunications analysis, ground-system implementation, and flight operations for deep-space and Earth-orbiting projects. He was the founding telecommunications member of JPLs Spaceflight Significant Events Group, now called Lessons Learned. He received the NASA Exceptional Achievement Medal in 2000 for innovative use of the DS1 communications systems and the NASA Exceptional Service Medal in 2006 for operational development and support on Deep impact.