|
|
1 | (12) |
|
|
1 | (2) |
|
|
3 | (6) |
|
|
9 | (3) |
|
1.3.1 Training and Test Data |
|
|
9 | (1) |
|
1.3.2 Prediction Accuracy Metrics |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
2 Data Pre-Processing and Modeling Factors |
|
|
13 | (16) |
|
2.1 Dealing with Missing Data |
|
|
13 | (4) |
|
|
17 | (1) |
|
2.3 Accounting for Time Effects |
|
|
18 | (4) |
|
|
22 | (2) |
|
2.5 Featured on Main Page |
|
|
24 | (1) |
|
2.6 Item Descriptive Features |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
2.9 Sorting and Exporting the Dataset |
|
|
27 | (1) |
|
|
27 | (2) |
|
3 Common Demand Prediction Methods |
|
|
29 | (40) |
|
3.1 Primer: Basic Linear Regression for One SKU |
|
|
30 | (2) |
|
3.2 Structuring the Dataset |
|
|
32 | (1) |
|
|
33 | (1) |
|
3.4 Decentralized Approach |
|
|
34 | (2) |
|
3.5 Feature Selection and Regularization |
|
|
36 | (13) |
|
|
36 | (6) |
|
3.5.2 Lasso Regularization |
|
|
42 | (4) |
|
3.5.3 Ridge Regularization |
|
|
46 | (1) |
|
3.5.4 Elastic Net Regularization |
|
|
47 | (2) |
|
|
49 | (7) |
|
3.6.1 Log-Transformation on the Price Variable |
|
|
49 | (3) |
|
3.6.2 Log-Transformation on the Target Variable |
|
|
52 | (2) |
|
3.6.3 Transformations and Prediction Accuracy |
|
|
54 | (2) |
|
3.7 Centralized Approach with SKU-Fixed Effects |
|
|
56 | (3) |
|
3.8 Centralized Approach with Price-Fixed Effects |
|
|
59 | (3) |
|
3.9 Centralized Approach with SKU-Price-Fixed Effects |
|
|
62 | (2) |
|
3.10 Decentralized Approach with Aggregated Seasonality |
|
|
64 | (2) |
|
3.11 Summary and Next Steps |
|
|
66 | (1) |
|
|
67 | (2) |
|
|
69 | (24) |
|
|
70 | (11) |
|
4.1.1 Centralized Decision Tree |
|
|
71 | (8) |
|
4.1.2 Decentralized Decision Tree |
|
|
79 | (2) |
|
|
81 | (5) |
|
4.2.1 Centralized Random Forest |
|
|
82 | (2) |
|
4.2.2 Decentralized Random Forest |
|
|
84 | (2) |
|
4.3 Gradient-Boosted Tree |
|
|
86 | (6) |
|
4.3.1 Centralized Gradient Boosted Tree |
|
|
87 | (2) |
|
4.3.2 Decentralized Gradient-Boosted Tree |
|
|
89 | (3) |
|
|
92 | (1) |
|
|
92 | (1) |
|
|
93 | (22) |
|
|
93 | (10) |
|
5.1.1 Description of K-means Clustering |
|
|
93 | (4) |
|
5.1.2 Clustering using Average Price and Weekly Sales |
|
|
97 | (3) |
|
5.1.3 Adding Standard Deviations of the Clustering Features |
|
|
100 | (3) |
|
|
103 | (11) |
|
5.2.1 Description of DBSCAN Clustering |
|
|
103 | (5) |
|
5.2.2 Clustering using Average Price and Weekly Sales |
|
|
108 | (5) |
|
5.2.3 Adding the Standard Deviation of the Clustering Features |
|
|
113 | (1) |
|
|
114 | (1) |
|
6 Evaluation and Visualization |
|
|
115 | (14) |
|
|
115 | (3) |
|
6.2 Prediction vs. Actual |
|
|
118 | (5) |
|
6.3 Varying the Split Ratio |
|
|
123 | (6) |
|
|
129 | (22) |
|
|
129 | (14) |
|
7.1.1 What is the Prophet Method? |
|
|
129 | (6) |
|
7.1.2 Forecasting with Prophet |
|
|
135 | (8) |
|
7.2 Data Aggregation and Demand Prediction |
|
|
143 | (6) |
|
7.2.1 Presentation of the DAC Method |
|
|
143 | (3) |
|
7.2.2 Fine-Tuning the Hyperparameters |
|
|
146 | (1) |
|
7.2.3 Interpretating the DAC Results |
|
|
147 | (2) |
|
|
149 | (2) |
|
8 Conclusion and Advanced Topics |
|
|
151 | |
|
|
155 | |