Muutke küpsiste eelistusi

E-raamat: Demystifying Climate Models: A Users Guide to Earth System Models

  • Formaat: EPUB+DRM
  • Sari: Earth Systems Data and Models 2
  • Ilmumisaeg: 09-Apr-2016
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662489598
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 4,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Earth Systems Data and Models 2
  • Ilmumisaeg: 09-Apr-2016
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783662489598
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book demystifies the models we use to simulate present and future climates, allowing readers to better understand how to use climate model results. In order to predict the future trajectory of the Earth’s climate, climate-system simulation models are necessary. When and how do we trust climate model predictions? The book offers a framework for answering this question. It provides readers with a basic primer on climate and climate change, and offers non-technical explanations for how climate models are constructed, why they are uncertain, and what level of confidence we should place in them. It presents current results and the key uncertainties concerning them. Uncertainty is not a weakness but understanding uncertainty is a strength and a key part of using any model, including climate models. Case studies of how climate model output has been used and how it might be used in the future are provided. The ultimate goal of this book is to promote a better understanding of the structure and uncertainties of climate models among users, including scientists, engineers and policymakers.

Muu info

This is an open access book, the electronic versions are freely accessible online.
Part I Basic Principles and the Problem of Climate Forecasts
1 Key Concepts in Climate Modeling
3(10)
1.1 What Is Climate?
3(4)
1.2 What Is a Model?
7(3)
1.3 Uncertainty
10(2)
1.3.1 Model Uncertainty
10(1)
1.3.2 Scenario Uncertainty
10(1)
1.3.3 Initial Condition Uncertainty
11(1)
1.3.4 Total Uncertainty
11(1)
1.4 Summary
12(1)
2 Components of the Climate System
13(10)
2.1 Components of the Earth System
13(7)
2.1.1 The Atmosphere
14(3)
2.1.2 The Ocean and Sea Ice
17(1)
2.1.3 Terrestrial Systems
18(2)
2.2 Timescales and Interactions
20(2)
2.3 Summary
22(1)
3 Climate Change and Global Warming
23(14)
3.1 Coupling of the Pieces
24(2)
3.2 Forcing the Climate System
26(3)
3.3 Climate History
29(1)
3.4 Understanding Where the Energy Goes
30(4)
3.5 Summary
34(3)
4 Essence of a Climate Model
37(24)
4.1 Scientific Principles in Climate Models
38(3)
4.2 Basic Formulation and Constraints
41(9)
4.2.1 Finite Pieces
41(2)
4.2.2 Processes
43(6)
4.2.3 Marching Forward in Time
49(1)
4.2.4 Examples of Finite Element Models
50(1)
4.3 Coupled Models
50(2)
4.4 A Brief History of Climate Models
52(1)
4.5 Computational Aspects of Climate Modeling
53(4)
4.5.1 The Computer Program
53(3)
4.5.2 Running a Model
56(1)
4.6 Summary
57(4)
Part II Model Mechanics
5 Simulating the Atmosphere
61(26)
5.1 Role of the Atmosphere in Climate
62(4)
5.2 Types of Atmospheric Models
66(3)
5.3 General Circulation
69(2)
5.4 Parts of an Atmosphere Model
71(7)
5.4.1 Clouds
74(2)
5.4.2 Radiative Energy
76(1)
5.4.3 Chemistry
76(2)
5.5 Weather Models Versus Climate Models
78(1)
5.6 Challenges for Atmospheric Models
79(4)
5.6.1 Uncertain and Unknown Processes
79(1)
5.6.2 Scales
80(1)
5.6.3 Feedbacks
81(1)
5.6.4 Cloud Feedback
81(2)
5.7 Applications: Impacts of Tropical Cyclones
83(2)
5.8 Summary
85(2)
6 Simulating the Ocean and Sea Ice
87(22)
6.1 Understanding the Ocean
88(2)
6.1.1 Structure of the Ocean
88(1)
6.1.2 Forcing of the Ocean
89(1)
6.2 "Limited" Ocean Models
90(2)
6.3 Ocean General Circulation Models
92(9)
6.3.1 Topography and Grids
92(1)
6.3.2 Deep Ocean
93(3)
6.3.3 Eddies in the Ocean
96(1)
6.3.4 Surface Ocean
97(3)
6.3.5 Structure of an Ocean Model
100(1)
6.3.6 Ocean Versus Atmosphere Models
101(1)
6.4 Sea-Ice Modeling
101(3)
6.5 The Ocean Carbon Cycle
104(1)
6.6 Challenges
104(2)
6.6.1 Challenges in Ocean Modeling
105(1)
6.6.2 Challenges in Sea Ice Modeling
105(1)
6.7 Applications: Sea-Level Rise, Norfolk, Virginia
106(1)
6.8 Summary
107(2)
7 Simulating Terrestrial Systems
109(30)
7.1 Role of the Land Surface in Climate
109(4)
7.1.1 Precipitation and the Water Cycle
110(1)
7.1.2 Vegetation
110(1)
7.1.3 Ice and Snow
111(1)
7.1.4 Human Impacts
112(1)
7.2 Building a Land Surface Simulation
113(8)
7.2.1 Evolution of a Terrestrial System Model
113(2)
7.2.2 Biogeophysics: Surface Fluxes and Heat
115(1)
7.2.3 Biogeophysics: Hydrology
116(2)
7.2.4 Ecosystem Dynamics (Vegetation and Land Cover/Use Change)
118(2)
7.2.5 Summary: Structure of a Land Model
120(1)
7.3 Biogeochemistry: Carbon and Other Nutrient Cycles
121(4)
7.4 Land-Atmosphere Interactions
125(1)
7.5 Land Ice
126(3)
7.6 Humans
129(2)
7.7 Integrated Assessment Models
131(1)
7.8 Challenges in Terrestrial System Modeling
132(2)
7.8.1 Ice Sheet Modeling
132(1)
7.8.2 Surface Albedo Feedback
133(1)
7.8.3 Carbon Feedback
134(1)
7.9 Applications: Wolf and Moose Ecosystem, Isle Royale National Park
134(2)
7.10 Summary
136(3)
8 Bringing the System Together: Coupling and Complexity
139(22)
8.1 Types of Coupled Models
139(5)
8.1.1 Regional Models
140(1)
8.1.2 Statistical Models and Downscaling
141(2)
8.1.3 Integrated Assessment Models
143(1)
8.2 Coupling Models Together: Common Threads
144(3)
8.3 Key Interactions in Climate Models
147(4)
8.3.1 Intermixing of the Feedback Loops
147(1)
8.3.2 Water Feedbacks
148(1)
8.3.3 Albedo Feedbacks
149(1)
8.3.4 Ocean Feedbacks
150(1)
8.3.5 Sea-Level Change
150(1)
8.4 Coupled Modes of Climate Variability
151(3)
8.4.1 Tropical Cyclones
151(1)
8.4.2 Monsoons
152(1)
8.4.3 El Nino
152(1)
8.4.4 Precipitation and the Land Surface
153(1)
8.4.5 Carbon Cycle and Climate
153(1)
8.5 Challenges
154(1)
8.6 Applications: Integrated Assessment of Water Resources
155(2)
8.7 Summary
157(4)
Part III Using Models
9 Model Evaluation
161(16)
9.1 Evaluation Versus Validation
161(8)
9.1.1 Evaluation and Missing Information
162(2)
9.1.2 Observations
164(4)
9.1.3 Model Improvement
168(1)
9.2 Climate Model Evaluation
169(4)
9.2.1 Types of Comparisons
169(1)
9.2.2 Model Simulations
170(2)
9.2.3 Using Model Evaluation to Guide Further Observations
172(1)
9.3 Predicting the Future: Forecasts Versus Projections
173(1)
9.3.1 Forecasts
173(1)
9.3.2 Projections
173(1)
9.4 Applications of Climate Model Evaluation: Ozone Assessment
174(1)
9.5 Summary
175(2)
10 Predictability
177(22)
10.1 Knowledge and Key Uncertainties
178(3)
10.1.1 Physics of the System
178(2)
10.1.2 Variability
180(1)
10.1.3 Sensitivity to Changes
180(1)
10.2 Types of Uncertainty and Timescales
181(10)
10.2.1 Predicting the Near Term: Initial Condition Uncertainty
182(1)
10.2.2 Predicting the Next 30-50 Years: Scenario Uncertainty
183(6)
10.2.3 Predicting the Long Term: Model Uncertainty Versus Scenario Uncertainty
189(2)
10.3 Ensembles: Multiple Models and Simulations
191(4)
10.4 Applications: Developing and Using Scenarios
195(1)
10.5 Summary
196(3)
11 Results of Current Models
199(22)
11.1 Organization of Climate Model Results
199(1)
11.2 Prediction and Uncertainty
200(4)
11.2.1 Goals of Prediction
201(1)
11.2.2 Uncertainty
202(1)
11.2.3 Why Models?
203(1)
11.3 What Is the Confidence in Predictions9
204(11)
11.3.1 Confident Predictions
205(5)
11.3.2 Uncertain Predictions: Where to Be Cautious
210(2)
11.3.3 Bad Predictions
212(2)
11.3.4 How Do We Predict Extreme Events?
214(1)
11.4 Climate Impacts and Extremes
215(2)
11.4.1 Tropical Cyclones
216(1)
11.4.2 Stream Flow and Extreme Events
216(1)
11.4.3 Electricity Demand and Extreme Events
217(1)
11.5 Application: Climate Model Impacts in Colorado
217(2)
11.6 Summary
219(2)
12 Usability of Climate Model Projections by Practitioners
221(16)
12.1 Knowledge Systems
222(2)
12.2 Interpretation and Translation
224(4)
12.2.1 Barriers to the Use of Climate Model Projections
225(1)
12.2.2 Downscaled Datasets
226(1)
12.2.3 Climate Assessments
227(1)
12.2.4 Expert Analysis
228(1)
12.3 Uncertainty
228(4)
12.3.1 Ensembles
231(1)
12.3.2 Uncertainty in Assessment Reports
231(1)
12.4 Framing Uncertainty
232(3)
12.5 Summary
235(2)
13 Summary and Final Thoughts
237(18)
13.1 What Is Climate?
237(1)
13.2 Key Features of a Climate Model
238(1)
13.3 Components of the Climate System
239(5)
13.3.1 The Atmosphere
240(1)
13.3.2 The Ocean
241(1)
13.3.3 Terrestrial Systems
242(1)
13.3.4 Coupled Components
243(1)
13.4 Evaluation and Uncertainty
244(2)
13.4.1 Evaluation
244(1)
13.4.2 Uncertainty
245(1)
13.5 What We Know (and Do not Know)
246(2)
13.6 The Future of Climate Modeling
248(3)
13.6.1 Increasing Resolution
248(1)
13.6.2 New and Improved Processes
249(1)
13.6.3 Challenges
250(1)
13.7 Final Thoughts
251(4)
Climate Modeling Text Glossary 255(16)
Index 271
Andrew Gettelman is a Scientist in the Climate and Global Dynamics and Atmospheric Chemistry and Modeling Laboratories at the National Center for Atmospheric Research (NCAR). He is actively involved in developing atmosphere and chemistry components for global climate models at NCAR. Dr. Gettelman specializes in understanding and simulating cloud processes and their impact on climate, especially ice clouds. He has numerous publications on cloud physics representations in global models, as well as research on climate forcing and feedbacks. He has participated in several international assessments of climate models, particularly for assessing atmospheric chemistry. Gettelman holds a doctorate in Atmospheric Science from the University of Washington, Seattle. He is a recent recipient of the American Geophysical Union Ascent Award, and is a Thompson-Reuters Highly Cited Researcher.

 





Richard B. Rood is a Professor in the Department of Climate and Space Sciences and Engineering (CLaSP) at the University of Michigan. He is also appointed in the School of Natural Resources and Environment. Prior to joining the University of Michigan, he worked in modeling and high performance computing at the National Aeronautics and Space Administration (NASA). His recent research is focused on the usability of climate knowledge and data in management planning and practice. He has started classes in climate-change problem solving, climate change uncertainty in decision making, climate-change informatics (with Paul Edwards). In addition to publications on numerical models, his recent publications include software engineering, informatics, political science, social science, forestry and public health. Roods professional degree is in Meteorology from Florida State University. He recently served on the National Academy of Sciences Committee on A National Strategy for Advancing Climate Modeling. He writes expert blogs on climate change science and problem solving for the Weather Underground Richard Rood is a Fellow of American Meteorological Society and a winner of the World Meteorological Organizations Norbert Gerbier Award.