Muutke küpsiste eelistusi

E-raamat: Dependable IoT for Human and Industry: Modeling, Architecting, Implementation

Edited by , Edited by , Edited by
  • Formaat: 622 pages
  • Ilmumisaeg: 01-Sep-2022
  • Kirjastus: River Publishers
  • ISBN-13: 9781000792881
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 95,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 622 pages
  • Ilmumisaeg: 01-Sep-2022
  • Kirjastus: River Publishers
  • ISBN-13: 9781000792881
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

There are numerous publications which introduce and discuss the Internet of Things (IoT). In the midst of these, this work has several unique characteristics which should change the readers perspective, and in particular, provide a more profound understanding of the impact of the IoT on society. Dependable IoT for Human and Industry covers the main aspects of Internet of Things and IoT based systems such as global issues of applications, modeling, development and implementation of dependable IoT for different human and industry domains. Technical topics discussed in the book include: Introduction in Internet of vital and trust Things Modelling and assessment techniques for dependable and secure IoT systems Architecting and development of IoT systems Implementation of IoT for smart cities and drone fleets; business and blockchain, transport and industry Training courses and education experience on Internet and Web of ThingThe book contains chapters which have their roots in the International Conference IDAACS 2017, and Workshop on Cyber Physical Systems and IoT Dependability CyberIoT-DESSERT 2017.
Preface xxi
Acknowledgments xxiii
List of Contributors
xxv
List of Figures
xxxiii
List of Tables
xlv
List of Abbreviations
xlvii
Dependable IoT for Human and Industry: Introduction and Book Scope 1(16)
1 Internet of Important Things
1(6)
2 Internet of Things and Collaboratory
7(5)
3 Main Topics and Scope
12(5)
PART I Internet of Vital and Trust Things
1 Disruptive Innovation in Vital Embedded Systems and the Internet of Vital Things
17(30)
Ted Kochanski
1.1 Introduction and Brief History
17(8)
1.1.1 Embedded Systems
17(3)
1.1.2 Critical Embedded Systems
20(1)
1.1.3 The Internet of Things in Context
21(3)
1.1.4 Some Observations of the Status Quo and the Near Term
24(1)
1.2 Internet of Vital Things (IoVT)
25(2)
1.2.1 Conception of IoVT
25(1)
1.2.2 Historic Example: SAGE
26(1)
1.3 The SAGE Air Defense System
27(1)
1.4 Evolution of Disruptive Innovation in the Design of Microelectronic Systems and the IoVT
27(8)
1.4.1 Creation of CIDLab
28(1)
1.4.2 Concepts of GAIN and Global Systems Engineering Education
29(1)
1.4.3 I-GEMS and the Virtual Design Universe
30(1)
1.4.4 Design for Globalization
31(2)
1.4.5 Vital Electronics
33(2)
1.5 Vital-iSolve and the Internet of Vital Things (IOVT)
35(4)
1.5.1 Vital-iSolve Fundamentals
36(2)
1.5.2 Vital-iSolve Ingredients
38(1)
1.5.3 Example From an E-health Ambulatory Sensor Application: Heart Sensor
39(1)
1.6 Conclusion
39(2)
1.6.1 Summing up the Recent Disruptive Innovation in Microelectronics Systems Education
39(1)
1.6.2 The Big Question Which Needs to be Addressed
40(1)
References
41(6)
2 How to Support Creativity in the Complex IoT with Ethics and Trust for Users
47(16)
Raymond J. Garbos
2.1 Introduction
48(2)
2.2 Architecting the Future
50(7)
2.2.1 Conceptual Architects
50(2)
2.2.2 System-of-Systems
52(2)
2.2.3 Trusted Interfaces
54(3)
2.3 Conclusion
57(1)
References
58(5)
PART II Modelling and Assessment
3 Design and Simulation of an Energy-efficient Sensor Network Routing Protocol for Large-scale Distributed Environmental Monitoring Systems
63(20)
Awais Ahmad
Muhammad Adeel Pasha
Shahid Masud
Axel Sikora
3.1 Introduction
64(3)
3.1.1 Context and Motivation
64(3)
3.1.2 Contributions
67(1)
3.2 Related Work
67(3)
3.3 Proposed Protocol EESNR
70(4)
3.3.1 Network Topology Model for EESNR
70(3)
3.3.2 Path Loss/Fading
73(1)
3.3.3 Radio and Data Transmission Model
73(1)
3.4 Simulation Setup and Results
74(5)
3.4.1 Simulation Setup
74(2)
3.4.2 Simulation Results
76(3)
3.5 Conclusions
79(1)
References
80(3)
4 Modeling and Assessment of Resource-sharing Efficiency in Social Internet of Things
83(22)
Kashif Zia
Arshad Muhammad
Dinesh Kumar Saini
4.1 Introduction
83(3)
4.2 Related Work
86(2)
4.3 Motivation
88(1)
4.4 The Proposed Model
89(4)
4.4.1 P2P Resource Sharing Specifications
89(1)
4.4.2 Agent-Based Model of Peers in Competitive Mode
90(2)
4.4.3 Agent-Based Model of Peers in Cooperative Mode
92(1)
4.5 Simulation and Results
93(7)
4.5.1 Simulation Setup
93(2)
4.5.2 Simulation Results
95(5)
4.6 Conclusions
100(1)
References
100(5)
5 Modeling and Availability Assessment of Mobile Healthcare IoT Using Tree Analysis and Queueing Theory
105(22)
Anastasiia Strielkina
Dmytro Uzun
Vyacheslav Kharchenko
Artem Tetsky
5.1 Introduction
106(2)
5.1.1 Motivation
106(1)
5.1.2 State of the Art
107(1)
5.1.3 Aim and Objectives
107(1)
5.2 Healthcare IoT Infrastructure
108(2)
5.3 Applicable Approaches and Methods for Modeling and Simulation of Healthcare IoT
110(5)
5.3.1 Fault Tree Analysis for Failure Occurrence Nature of Healthcare IoT
110(4)
5.3.2 Justification of Applicability of the Queueing Theory
114(1)
5.4 Case Study: Modeling of Healthcare IoT Using Queueing Theory
115(7)
5.4.1 Initial Model "Birth-Death"
115(1)
5.4.2 The Model Considering Attacks on Vulnerabilities
116(1)
5.4.3 The Model Considering Elimination of Vulnerabilities
117(5)
5.4.4 Discussion of the Simulation Results
122(1)
5.5 Conclusions
122(2)
References
124(3)
6 PSMECA Analysis of IoT-based Physical Security Systems
127(20)
Al-Khafaji Ahmed Waleed
Vyacheslav Kharchenko
Dmytro Uzun
Oleg Illiashenko
Oleksandr Solovyov
6.1 Introduction
127(4)
6.1.1 Motivation
127(1)
6.1.2 The Objectives, Approach and Structure
128(3)
6.2 IoT-based Physical Security System
131(3)
6.3 Establishment of the Models of PSS
134(5)
6.3.1 Models of Functions and Components of PSS
135(2)
6.3.2 Fault Models of Physical Security System
137(1)
6.3.3 Investigation and Analysis of the Occurrence of Failures in PSS
138(1)
6.4 Conducting of PSMECA
139(3)
6.4.1 An Example of PSMECA Tables for the Case of CCTV Subsystem Functioning in Normal Operation Mode
139(3)
6.4.2 Discussion of the PSMECA
142(1)
6.5 Conclusions and Future Steps
142(1)
References
143(4)
7 IoT Security Event Correlation Based on the Analysis of Event Types
147(22)
Andrey Fedorchenko
Igor Kotenko
7.1 Introduction
148(2)
7.2 State of the Art
150(2)
7.3 Approach to Security Event Correlation
152(5)
7.3.1 Security Correlation and Sources of Information
152(1)
7.3.2 Events, Event Types, and Properties
153(1)
7.3.3 Correlation Method Based on Analysis of Event Types
154(2)
7.3.4 Input Data Requirements
156(1)
7.4 Implementation and Experiments
157(8)
7.5 Conclusion
165(1)
References
166(3)
8 Investigation of the Smart Business Center for IoT Systems Availability Considering Attacks on the Router
169(28)
Maryna Kolisnyk
Vyacheslav Kharchenko
Iryna Piskachova
8.1 Introduction
170(2)
8.2 Security Challenges for IoT Technologies
172(10)
8.2.1 Technologies and Features to Create IoT Systems
172(2)
8.2.2 Vulnerabilities and Types of Attacks in Wireless IoT Systems
174(1)
8.2.3 Security Issues of Some Wireless Technologies of IoT
175(1)
8.2.3.1 ZigBee technology
175(1)
8.2.3.2 Z-wave technology
176(1)
8.2.3.3 Long-Term Evolution/Long-Term Evolution Advanced (LTE/LTE-A) technologies
177(1)
8.2.3.4 Low-power Wide-area Network (LoRAWAN) technology
178(1)
8.2.3.5 Radio Frequency IDentification (RFID) technology
179(1)
8.2.3.6 Bluetooth Low Energy technology (BLE)
179(1)
8.2.4 SpywareinloT
180(2)
8.3 The Markov Model of the SBC Router States
182(8)
8.3.1 Assumptions and Initial Data for Modeling
182(3)
8.3.2 Description of the SBC Router States' Graph
185(2)
8.3.3 Simulation Results
187(3)
8.4 Conclusion
190(1)
References
191(6)
9 An Internet of Drone-based Multi- version Post-severe Accident Monitoring System: Structures and Reliability
197(24)
Herman Fesenko
Vyacheslav Kharchenko
Anatoliy Sachenko
Robert Hiromoto
Volodymyr Kochan
9.1 Introduction
198(3)
9.1.1 Motivation
198(1)
9.1.2 State of the Art
198(3)
9.1.3 The Goals and Structure
201(1)
9.2 Principles of Creating an Internet-of-drones-based Multi-version Post-severe Accident Monitoring System
201(3)
9.2.1 Structure
201(1)
9.2.2 Principles
202(2)
9.3 Reliability Models for the Internet-of-drones-based Multi-version Post-severe Accident Monitoring System
204(8)
9.3.1 Simplified Structure
204(2)
9.3.2 Subsystems' Reliability Models
206(4)
9.3.3 System Models
210(2)
9.4 Simulation
212(2)
9.5 Conclusion
214(1)
References
215(6)
PART III Architecting and Development
10 Virtualization of Embedded Nodes for Network System Characterization in IoT Applications
221(20)
Manuel Schappacher
Artem Yushev
Mahbuba Moni
Axel Sikora
10.1 Introduction
222(1)
10.2 Related Work
222(3)
10.2.1 System Level Simulation
223(1)
10.2.2 Network Level Simulation
223(1)
10.2.3 Network Level Emulation
224(1)
10.3 Requirements
225(1)
10.4 Background
226(1)
10.4.1 The emb::6 Networking Stack
226(1)
10.4.2 TTCN-3
227(1)
10.5 VTENN Basics
227(5)
10.5.1 General Architecture
227(1)
10.5.2 Node Virtualization
228(1)
10.5.3 Virtual Radio and Channel
229(1)
10.5.4 Virtual Topologies
230(1)
10.5.5 Monitoring and Control
231(1)
10.6 Design and Implementation
232(5)
10.6.1 Test Executor
232(2)
10.6.2 Network Manager
234(1)
10.6.3 Virtual Nodes and Virtual Channels
234(1)
10.6.4 Sample Test Cases
235(2)
10.7 VTENN in IoT Applications
237(1)
10.8 Conclusion and Future Work
238(1)
References
239(2)
11 IoT Meets Opportunities and Challenges: Edge Computing in Deep Urban Environment
241(32)
Marta Chinnici
Saverio De Vito
11.1 Introduction
242(2)
11.2 The Role of Big Data in IoT Era
244(4)
11.2.1 Big Data Generation
244(1)
11.2.2 IoT Data and Big Data Analytics
245(1)
11.2.3 IoT System Architecture
246(2)
11.3 Deep Urban Environment
248(5)
11.3.1 Urban Paradigm
248(2)
11.3.2 Urban IoT Applications
250(3)
11.4 The Emergence of Edge Computing in Urban Context
253(11)
11.4.1 Edge Vision
255(1)
11.4.2 Application in Urban Environment: Pollution Monitoring
256(3)
11.4.3 Network Load Improvements
259(1)
11.4.4 Network Local Estimation of Concentration for Immediate Exposure Feedback
260(3)
11.4.5 Dependability: Reliability, Security, and Maintenance
263(1)
11.5 Challenges
264(4)
11.6 Conclusion
268(1)
References
269(4)
12 Hybrid Control System of Mobile Objects for IoT
273(20)
Anzhelika Parkhomenko
Dmytro Kravchenko
Oleksii Kravchenko
Olga Gladkova
12.1 Introduction
273(2)
12.2 Related Work
275(1)
12.3 Methodology
276(2)
12.4 Implementation and Evaluation of the Hybrid Control System
278(10)
12.4.1 Subsystem of Remote Control
278(5)
12.4.2 Subsystem of Autonomous Control
283(5)
12.5 Results and Further Work
288(1)
12.6 Conclusion
289(1)
References
290(3)
13 Software Architecture for Smart Cities and Technical Solutions with Emerging Technologies' Internet of Things
293(14)
Dinesh Kumar Saini
Kashif Zia
Arshad Muhammad
13.1 Introduction
293(4)
13.1.1 Challenges in a Smart City
294(1)
13.1.2 Software Architecture for a Smart City
294(1)
13.1.3 Smart City Governance: Example of Oman
295(1)
13.1.4 Examples of Services Like Intelligent Transport System or Smart Transportation
295(2)
13.1.5 Smart Urban Modeling
297(1)
13.2 Security in a Smart City
297(5)
13.2.1 Attack Analysis
299(1)
13.2.2 Cyber-Physical Systems in Smart Cities
300(2)
13.3 IoT Solutions for a Smart City
302(1)
13.4 Conclusion
303(1)
References
304(3)
14 Approaches and Techniques to Improve IoT Dependability
307(24)
Nikolaos G. Bardis
Nikolaos Doukas
Vyacheslav Kharchenko
Vladimir Sklyar
Svitlana Yaremchuk
14.1 Introduction
308(3)
14.1.1 Motivation
308(2)
14.1.2 Objectives and Structure
310(1)
14.2 Secure Implementation of Modular Arithmetic Operations for IoT and Cloud Applications
311(5)
14.2.1 Modular Arithmetic Operation for IoT and Cloud Security
311(2)
14.2.2 Shortfalls of Methods for Secure Remote Implementation of Modular Exponentiation
313(1)
14.2.3 Secure Parallel Modular Exponentiation
313(1)
14.2.4 Secure Modular Exponentiation in Cloud Infrastructure
314(2)
14.3 Security and Safety Case Driven Design for IoT Systems
316(4)
14.3.1 Concept of Assurance Case Driven Design
316(2)
14.3.2 Approach to Implement ACDD
318(2)
14.4 Software Requirements Correctness Improvement for IoT Reliability
320(4)
14.4.1 Challenges for Software Systems' Reliability
320(1)
14.4.2 Methods of SWS Requirements' Correctness Improvement
321(2)
14.4.3 Proposed Metric for Requirement Complexity Evaluation
323(1)
14.5 Conclusion
324(1)
References
325(6)
PART IV Implementation and Industry Cases
15 Holistic Systems Engineering Methodology for Intelligent Energy Systems - with a Case Study from "ruhrvalley"
331(20)
Carsten Wolff
Torben Lippmann
Uwe Jahn
15.1 Introduction
332(1)
15.2 Systems Engineering for Intelligent Energy Systems -Literature Review and State of the Art
333(5)
15.3 Case Study: ORC Turbine
338(2)
15.4 Software Architecture for an IoT System based on OCM
340(4)
15.5 Smartification Process for Intelligent Technical Systems
344(3)
15.6 Conclusion
347(1)
References
348(3)
16 Smart Waste Management System: A Fusion of IoT and Blockchain Technology
351(16)
Manish Lamichhane
Oleg Sadov
Arkady Zaslavsky
16.1 Introduction
352(1)
16.2 IoT, Blockchain and Dependability
353(1)
16.3 Background and Motivation
354(1)
16.4 Related Work
355(2)
16.4.1 Sensing Waste Levels
356(1)
16.4.2 Sorting Waste at Source
356(1)
16.4.3 WSN-based Architectures
356(1)
16.5 Architecture Overview
357(4)
16.5.1 Blockchain
358(1)
16.5.1.1 The bank
358(1)
16.5.1.2 Community DAO
359(1)
16.5.1.3 SGBFactory
360(1)
16.5.2 SWM Server
360(1)
16.5.2.1 MongoDB
360(1)
16.5.2.2 Telegram Bot
360(1)
16.5.3 SGB Simulation
361(1)
16.5.4 User Domain
361(1)
16.5.4.1 Telegram
361(1)
16.5.4.2 Web application
361(1)
16.6 MQTT Message Exchange Architecture
361(2)
16.6.1 MQTT Topic Hierarchy
362(1)
16.6.2 Authentication
362(1)
16.6.3 Waste
362(1)
16.7 Limitation and Future Work
363(1)
16.8 Conclusion
363(1)
References
364(3)
17 Automation of Control Processes in Specialized Pyrolysis Complexes Based on Industrial Internet of Things
367(22)
Yuriy Kondratenko
Oleksiy Kozlov
Andriy Topalov
Oleksiy Korobko
Oleksandr Gerasin
17.1 Introduction
368(1)
17.2 Industrial Internet of Things Approach and Its Implementation
369(3)
17.3 Generalized IIoT-Based Pyrolysis Complex Control System
372(4)
17.4 Implementation of the IIoT System for the SPC MCP-5
376(7)
17.4.1 Functional Structure of the IIoT System for the SPC MCP-5
376(2)
17.4.2 Description of the MCP-5 IIoT System Hardware
378(1)
17.4.3 Description of the MCP-5 IIoT System Software
379(2)
17.4.4 HMIof the MCP-5 IIoT System
381(2)
17.5 Conclusion
383(1)
References
384(5)
18 Cloud-based IT Infrastructure for "Smart City" Projects
389(22)
Oleksii Duda
Nataliia Kunanets
Oleksandr Matsiuk
Volodymyr Pasichnyk
18.1 Introduction
390(1)
18.2 Socio-Communicative Component of the "Smart Cities" Projects
391(1)
18.3 Information-Technological Resources for the "Smart Cities" Projects Implementation
392(2)
18.4 The "Smart City" Project Tasks which can be Solved on the Basis of Cloud Computing
394(1)
18.5 Generalized Architecture of Information-Technological Support of the "Smart City"
395(1)
18.6 Infrastructure Platform for Cloud-Based "Smart City" Projects
396(3)
18.7 Architecture of the Center for the "Smart City" Analytical Data Processing
399(3)
18.8 Computing Architecture for Providing Information and Technology Services in the "Smart Cities"
402(2)
18.9 Conclusions and Further Investigation
404(1)
References
405(6)
19 A Framework for Real-Time Public Transport Information Acquisition and Arrival Time Prediction Based on GPS Data
411(22)
Inna Skarga-Bandurova
Marina Derkach
Artem Velykzhanin
19.1 Introduction
411(4)
19.1.1 Real-Time Public Transport Information Service Infrastructure
412(1)
19.1.2 Objective and Challenges
413(2)
19.2 Arrival Time Prediction Models
415(4)
19.2.1 Prediction Methodology
415(2)
19.2.2 Kalman Filtering
417(2)
19.2.3 Accuracy Metrics
419(1)
19.3 Case Study
419(10)
19.3.1 General Strategy of Public Transport Information Service Delivering
420(1)
19.3.2 The Remote Access Configuration
420(1)
19.3.3 GPS Data Acquisition
421(1)
19.3.4 Assigning Route Number to Each Trolleybus
421(1)
19.3.5 Calculate the Predicted Arrival Time
422(2)
19.3.6 Data Acquisition and Information Processing Algorithm
424(1)
19.3.7 Experimental Results and Model Predictions for Trolleybus Arrival Time
425(4)
19.4 Conclusion and Future Work
429(1)
References
429(4)
20 Scalable Smart Transducer Networks Using Power-over-Ethernet and Neural Networks
433(22)
Ivan Lobachev
20.1 Introduction
434(1)
20.2 Research Objectives and Related Work
434(2)
20.3 Advantages and Improvements
436(1)
20.4 System Architecture
437(10)
20.4.1 System Requirements
438(1)
20.4.2 Sensor Hub Classes
439(2)
20.4.3 Configuration
441(1)
20.4.4 Requirements and Modes of Operation
442(1)
20.4.5 Parameters, Organization, and Data Processing
443(1)
20.4.6 Data Processing and Presentation
444(1)
20.4.7 The Hierarchy
445(1)
20.4.8 Incorporation of Neural Networks
446(1)
20.5 Testing
447(2)
20.6 Conclusion
449(2)
20.7 Future Work
451(1)
References
451(4)
21 IoT Systems of the AAL Sector: Application, Business Model, and Data Privacy
455(24)
Jelena Bleja
Uwe Grossmann
Bettina Horster
Andree Rofi
Enrico Lbhrke
Christof Rohrig
Jan Oelker
Aylin Celik
Reiner Hormann
21.1 Introduction
455(3)
21.2 Smart Service Power (SSP) - Ambient Assisted Living for Elderly People
458(4)
21.2.1 The Ambient Assisted Living (AAL) of SSP
458(1)
21.2.2 Smart Service Power Top-Level System Architecture
459(3)
21.3 Solion - A Radio-based Assistance System
462(2)
21.4 Covibo - Vital Data Acquisition
464(1)
21.4.1 System for Vital Data Acquisition
465(1)
21.4.2 Communication Structure
465(1)
21.5 Business Models for AAL Applications
465(5)
21.6 Data Privacy and Data Usage Control
470(2)
21.7 Conclusion
472(1)
References
473(6)
PART V Education and Training
22 Internet/Web of Things: A Survey of Technologies and Educational Programs
479(24)
Volodymyr Tkachenko
Eugene Brezhniev
22.1 Introduction
479(5)
22.1.1 Motivation
481(1)
22.1.2 State of Art
481(2)
22.1.3 Goals and Structure
483(1)
22.2 Survey of IoT/WoT Technologies
484(6)
22.2.1 IoT Global Network Architecture
485(3)
22.2.2 Web of Things
488(2)
22.3 Structure of the Training Program "Technologies and Tools for Developing WoT Applications"
490(4)
22.4 Conclusion
494(1)
References
495(8)
23 Prospects for Constructing Remote Laboratories to Study Cognitive IoT Systems
503(1)
Mykhailo Poliakov
Karsten Henke
Heinz-Dietrich Wuttke
23 A Introduction
504(11)
23.2 State of the Art
505(1)
23.3 Cognitive Control System Model
505(3)
23.4 Prospects for Constructing Remote Laboratories
508(3)
23.5 Conclusion
511(1)
References
512(3)
24 Project-Oriented Teaching Approach for IoT Education
515(20)
Peter Arras
Dirk Van Merode
Galyna Tabunshchyk
24.1 Introduction
516(1)
24.2 Remotely Controlled Experiments
517(7)
24.2.1 Informational Systems on Reliability Tasks-lab (ISRT)
518(3)
24.2.2 Computer-Aided Learning Module (CALM)
521(1)
24.2.2.1 Aims and usage of the CALM
521(2)
24.2.2.2 Project-oriented approach
523(1)
24.3 IoT Projects for Education
524(3)
24.3.1 Smart-campus Project
524(2)
24.3.2 Re-engineering of Existing Engineering Software for a New Platform (COPTURN Project)
526(1)
24.4 The Embedded Factory as a Tool for Implementation
527(3)
24.5 Conclusions
530(1)
References
531(4)
25 Internet of Things for Industry and Human Applications: ALIOT-Based Vertically Integrated Education
535(26)
Artem Boyarchuk
Oleg Illiashenko
Vyacheslav Kharchenko
Dmytro Maevsky
Chris Phillips
Anatoliy Plakhteev
Lolita Vystorobska
25.1 Introduction
536(7)
25.1.1 Motivation
536(1)
25.1.2 State of the Art and Publication Statistics
536(6)
25.1.3 Objectives and Approach
542(1)
25.2 The Aliot Project for Vertically Integrated Education
543(6)
25.2.1 Challenges and Rationale
543(2)
25.2.2 Innovative Character
545(1)
25.2.3 Project Activities and Methodology
546(1)
25.2.4 Expected Impact of the Project
547(2)
25.2.5 ALIOT Curriculum
549(1)
25.3 Overview of the IoT Courses in Europe and the United States
549(4)
25.3.1 Overview of IoT Courses in ALIOT Project Partners
549(1)
25.3.2 Metrics-Based Approach of IoT Courses Analysis
550(3)
25.4 ALIOT Project Case Studies
553(5)
25.4.1 Control Unit for Mini Plotter
553(3)
25.4.2 Control Unit for the LED Ribbon with Pixel Addressing
556(2)
25.5 Conclusions
558(1)
References
559(2)
Index 561(4)
About the Editors 565
Vyacheslav Kharchenko, Ah Lian Kor, Andrzej Rucinski